ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear magnetoresistance in commercial n-type silicon due to inhomogeneous doping

145   0   0.0 ( 0 )
 نشر من قبل Dr Chris Marrows
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Free electron theory tells us that resistivity is independent of magnetic field. In fact, most observations match the semiclassical prediction of a magnetoresistance that is quadratic at low fields before saturating. However, a non-saturating linear magnetoresistance has been observed in exotic semiconductors such as silver chalcogenides, lightly-doped InSb, N-doped InAs, MnAs-GaAs composites, PrFeAsO, and epitaxial graphene. Here we report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer. It is well-described by a classical model of spatially fluctuating donor densities, and may be amplified by altering the aspect ratio of the sample to enhance current-jetting: increasing the width tenfold increased the magnetoresistance at 8 T from 445 % to 4707 % at 35 K. This physical picture may well offer insights into the large magnetoresistances recently observed in n-type and p-type Si in the non-ohmic regime.

قيم البحث

اقرأ أيضاً

138 - J. Balogh , M. Csontos , D. Kaptas 2002
Giant magnetoresistance (GMR) of sequentially evaporated Fe-Ag structures have been investigated. Direct experimental evidence is given that inserting ferromagnetic layers into a granular structure significantly enhances the magnetoresistance. The in crease of the GMR effect is attributed to spin polarization effects. The large enhancement (up to more than a fourfold value) and the linear variation of the GMR in low magnetic fields are explained by scattering of the spin polarized conduction electrons on paramagnetic grains.
The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya that gives rise to the helical and Skyrmion states. We report the unusual m agnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry. We present a microscopic theory, a minimal theory with two spin-orbit terms, that satisfies all the symmetry requirements and accounts for the transport experiments.
We achieved ohmic contacts down to 5 K on standard n-doped Ge samples by creating a strongly doped thin Ge layer between the metallic contacts and the Ge substrate. Thanks to the laser doping technique used, Gas Immersion Laser Doping, we could attai n extremely large doping levels above the solubility limit, and thus reduce the metal/doped Ge contact resistance. We tested independently the influence of the doping concentration and doped layer thickness, and showed that the ohmic contact improves when increasing the doping level and is not affected when changing the doped thickness. Furthermore, we characterised the doped Ge/Ge contact, showing that at high doping its contact resistance is the dominant contribution to the total contact resistance.
We have performed longitudinal magnetoresistance measurements on heavily n-doped silicon for donor concentrations exceeding the critical value for the metal-non-metal transition. The results are compared to those from a many-body theory where the don or-electrons are assumed to reside at the bottom of the many-valley conduction band of the host. Good qualitative agreement between theory and experiment is obtained.
We report the observation of the antisymmetric magnetoresistance (MR) in perpendicular magnetized CoTb films with inhomogeneous magnetization distribution driven by gradient magnetic field. By synchronously charactering the domain pattern evolution d uring transport measurements, we demonstrate that the nonequilibrium currents in the vicinity of tilting domain walls give rise to such anomalous MR. Moreover, theoretical calculation and analysis reveal that the geometry factor of the multidomain texture plays a dominant role in generating the nonequilibrium current. The explicitly established interplay between the anomalous transport behaviors and the particular domain wall geometry is essential to deepening understanding of the antisymmetric MR, and pave a new way for designing novel domain wall electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا