ﻻ يوجد ملخص باللغة العربية
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Benard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a polynomial fit to the azimuthal temperature or azimuthal vertical velocity profile measured with the probes. We study the LSC in Gamma=D/L=1/2 and Gamma=1 samples, where D is the diameter and L the height. For Pr=6.4 in an aspect ratio Gamma=1 sample at $Ra=1times10^8$ and $5times10^8$ the obtained LSC orientation is the same, irrespective of whether the data of only 8 or all 64 probes per horizontal plane are considered. In a Gamma=1/2 sample with $Pr=0.7$ at $Ra=1times10^8$ the influence of plumes on the azimuthal temperature and azimuthal vertical velocity profiles is stronger. Due to passing plumes and/or the corner flow the apparent LSC orientation obtained using a cosine fit can result in a misinterpretation of the character of the large-scale flow. We introduce the relative LSC strength, which we define as the ratio between the energy in the first Fourier mode and the energy in all modes that can be determined from the azimuthal temperature and azimuthal vertical velocity profiles, to further quantify the large-scale flow. For $Ra=1times10^8$ we find that this relative LSC strength is significantly lower in a Gamma=1/2 sample than in a Gamma=1 sample, reflecting that the LSC is much more pronounced in a Gamma=1 sample than in a Gamma=1/2 sample. The determination of the relative LSC strength can be applied directly to available experimental data to study high Rayleigh number thermal convection and rotating RB convection.
The effect of rotation on the boundary layers (BLs) in a Rayleigh-Benard (RB) system at a relatively low Rayleigh number, i.e. $Ra = 4times10^7$, is studied for different Pr by direct numerical simulations and the results are compared with laminar BL
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the
By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--Benard convection experiments in a cylindrical container of aspect ratio $Gamma=D/L=0.5$ between its di
In turbulent Rayleigh-Benard convection, a large-scale circulation (LSC) develops in a nearly vertical plane, and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers. Rare but large fluctuations in the LSC a
When the classical Rayleigh-Benard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotat