ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting double dark resonances in a hot atomic vapor of helium

96   0   0.0 ( 0 )
 نشر من قبل Rupamanjari Ghosh
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally and theoretically study two different tripod configurations using metastable helium ($^4$He*), with the probe field polarization perpendicular and parallel to the quantization axis, defined by an applied weak magnetic field. In the first case, the two dark resonances interact incoherently and merge together into a single EIT peak with increasing coupling power. In the second case, we observe destructive interference between the two dark resonances inducing an extra absorption peak at the line center.

قيم البحث

اقرأ أيضاً

We report the observation of double-quantum coherence signals in a gas of potassium atoms at twice the frequency of the one-quantum coherences. Since a single atom does not have a state at the corresponding energy, this observation must be attributed to a collective resonance involving multiple atoms. These resonances are induced by weak inter-atomic dipole-dipole interactions, which means that the atoms cannot be treated in isolation, even at a low density of $10^{12}$ cm$^{-3}$.
Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy - promoting rando m interactions - can help generate and preserve entanglement. We use optical quantum non-demolition measurement to produce entanglement in a hot alkali vapor, in a regime dominated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing inequalities to show that at least $1.52(4)times 10^{13}$ of the $5.32(12) times 10^{13}$ participating atoms enter into singlet-type entangled states, which persist for tens of spin-thermalization times and span thousands of times the nearest-neighbor distance. The results show that high temperatures and strong random interactions need not destroy many-body quantum coherence, that collective measurement can produce very complex entangled states, and that the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for sensing beyond the standard quantum limit.
We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor. Moreover, we demon strate that relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation to access non-trivial spectral features, with potential applications in astrophysics.
We theoretically analyze the dynamics of an atomic double-well system with a single ion trapped in its center. We find that the atomic tunnelling rate between the wells depends both on the spin of the ion via the short-range spin-dependent atom-ion s cattering length and on its motional state with tunnelling rates reaching hundreds of Hz. A protocol is presented that could transport an atom from one well to the other depending on the motional (Fock) state of the ion within a few ms. This phonon-atom coupling is of interest for creating atom-ion entangled states and may form a building block in constructing a hybrid atom-ion quantum simulator. We also analyze the effect of imperfect ground state cooling of the ion and the role of micromotion when the ion is trapped in a Paul trap. Due to the strong non-linearities in the atom-ion interaction, the micromotion can cause couplings to high energy atom-ion scattering states, preventing accurate state preparation and complicating the double-well dynamics. We conclude that the effects of micromotion can be reduced by choosing ion/atom combinations with a large mass ratio and by choosing large inter-well distances. The proposed double-well system may be realised in an experiment by combining either optical traps or magnetic microtraps for atoms with ion trapping technology.
Reversible and coherent storage of light in atomic medium is a key-stone of future quantum information applications. In this work, arbitrary two-dimensional images are slowed and stored in warm atomic vapor for up to 30 $mu$s, utilizing electromagnet ically induced transparency. Both the intensity and the phase patterns of the optical field are maintained. The main limitation on the storage resolution and duration is found to be the diffusion of atoms. A techniqueanalogous to phase-shift lithography is employed to diminish the effect of diffusion on the visibility of the reconstructed image.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا