ﻻ يوجد ملخص باللغة العربية
Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy - promoting random interactions - can help generate and preserve entanglement. We use optical quantum non-demolition measurement to produce entanglement in a hot alkali vapor, in a regime dominated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing inequalities to show that at least $1.52(4)times 10^{13}$ of the $5.32(12) times 10^{13}$ participating atoms enter into singlet-type entangled states, which persist for tens of spin-thermalization times and span thousands of times the nearest-neighbor distance. The results show that high temperatures and strong random interactions need not destroy many-body quantum coherence, that collective measurement can produce very complex entangled states, and that the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for sensing beyond the standard quantum limit.
A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum
We experimentally and theoretically study two different tripod configurations using metastable helium ($^4$He*), with the probe field polarization perpendicular and parallel to the quantization axis, defined by an applied weak magnetic field. In the
Dynamics of quantum entanglement shared between system spins which are connected to thermal equilibrium baths is studied. Central spin system comprises of the entangled spins, and is connected to baths and one of the bath has strong intra-environment
By using photon pairs created in parametric down conversion, we report on an experiment, which demonstrates that measurement can recover the quantum entanglement of two qubit system in a pure dephasing environment. The concurrence of the final state
The most direct approach for characterizing the quantum dynamics of a strongly-interacting system is to measure the time-evolution of its full many-body state. Despite the conceptual simplicity of this approach, it quickly becomes intractable as the