ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric and magnetic dipolar response of Germanium spheres: Interference effects, scattering anisotropy and optical forces

168   0   0.0 ( 0 )
 نشر من قبل Juan Jose Saenz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the scattering cross sections, and their consequences, for submicrometer Germanium spheres. It is shown that there is a wide window in the near infrared where light scattering by these particles is fully described by their induced electric and magnetic dipoles. In this way, we observe remarkable anisotropic scattering angular distributions, as well as zero forward or backward scattered intensities, which until recently was theoretically demonstrated only for hypothetically postulated magnetodielectric spheres. Also, interesting new effects of the optical forces exerted on these objects are now obtained.

قيم البحث

اقرأ أيضاً

We investigate the effect of parity-time (PT)-symmetric optical potentials on the radiation of achiral and chiral emitters. Mode coalescence and the appearance of exceptional points lead to orders-of-magnitude enhancements in the emitted dipole power . Further, the emitter can be tuned to behave as a strong optical source or absorber based on the non-Hermiticity parameter. Chiral enantiomers radiating near PT metamaterials exhibit a 4.5-fold difference in their decay rate. The results of this work could enable new atom-cavity interactions for quantum optics, as well as all- optical enantio-specific separation.
We demonstrate that the toroidal dipolar response can be realized in the optical regime by designing a feasible nanostructured metamaterial, comprising asymmetric double-bar magnetic resonators assembled into a toroid-like configuration. It is confir med numerically that an optical toroidal dipolar moment dominates over other moments. This response is characterized by a strong confinement of an E-field component at the toroid center, oriented perpendicular to the H-vortex plane. The resonance-enhanced optical toroidal response can provide an experimental avenue for various interesting optical phenomena associated with the elusive toroidal moment.
With the rise of artificial magnetism and metamaterials, the toroidal family recently attracts more attention for its unique properties. Here we propose an all-dielectric pentamer metamolecule consisting of nano-cylinders with two toroidal dipolar re sonances, whose frequencies, EM distributions and Q factor can be efficiently tuned due to the additional electric dipole mode offered by a central cylinder. To further reveal the underlying coupling effects and formation mechanism of toroidal responses, the multiple scattering theory is adopted. It is found that the first toroidal dipole mode, which can be tuned from 2.21 to 3.55 $mu$m, is mainly induced by a collective electric dipolar resonance, while the second one, which can be tuned from 1.53 to 1.84 $mu$m, relies on the cross coupling of both electric and magnetic dipolar responses. The proposed low-loss metamolecule and modes coupling analyses may pave the way for active design of toroidal responses in advanced optical devices.
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under off resonance femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film , as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
Geometrical and dynamical phase have competing effects as far a scattering of light form inhomogeneous anisotropic optical medium is concerned. If fine-tuned appropriately, these effects can completely cancel each other for a chosen spin component wh ile having an additive effect on the orthogonal components. Here, we show a manifestation of extraordinary spin selective modes in Fourier spectrum of Gaussian beam transmitted through anisotropic disordered medium. We realize the concept using a twisted nematic liquid crystal-based spatial light modulator (SLM) with random gray level distribution for incident Gaussian beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا