ﻻ يوجد ملخص باللغة العربية
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under off resonance femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
The nonlinear optical response of materials to exciting light is enhanced by resonances between the incident laser frequencies and the energy levels of the excited material. Traditionally, in molecular nonlinear spectroscopy one tunes the input laser
Optical metamaterials and metasurfaces which emerged in the course of the last few decades have revolutionized our understanding of light and light-matter interaction. While solid materials are naturally employed as key building elements for construc
We propose novel quantum antennas and metamaterials with strong magnetic response at optical frequencies. Our design is based on the arrangement of natural atoms with only electric dipole transition moments at distances smaller than a wavelength of l
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct
Materials with massless Dirac fermions can possess exceptionally strong and widely tunable optical nonlinearities. Experiments on graphene monolayer have indeed found very large third-order nonlinear responses, but the reported variation of the nonli