ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical toroidal dipolar response by an asymmetric double-bar metamaterial

202   0   0.0 ( 0 )
 نشر من قبل Zheng-gao Dong
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that the toroidal dipolar response can be realized in the optical regime by designing a feasible nanostructured metamaterial, comprising asymmetric double-bar magnetic resonators assembled into a toroid-like configuration. It is confirmed numerically that an optical toroidal dipolar moment dominates over other moments. This response is characterized by a strong confinement of an E-field component at the toroid center, oriented perpendicular to the H-vortex plane. The resonance-enhanced optical toroidal response can provide an experimental avenue for various interesting optical phenomena associated with the elusive toroidal moment.

قيم البحث

اقرأ أيضاً

The toroidal response is numerically investigated in a multifold double-ring metamaterials at the antibonding magnetic-dipole mode (i.e., antiparallel magnetic dipoles in one double-ring fold). This intriguing toroidal resonance in metamaterials is c onsidered as a result of the magnetoelectric effect due to the broken balance of the electric near-field environment. We demonstrate that the toroidal dipole response in metamaterials can improve the quality factor of the resonance spectrum. In viewing of the design flexibility on the double-ring geometry, such toroidal metamaterials will offer advantages in application potentials of toroidal dipolar moment.
With the rise of artificial magnetism and metamaterials, the toroidal family recently attracts more attention for its unique properties. Here we propose an all-dielectric pentamer metamolecule consisting of nano-cylinders with two toroidal dipolar re sonances, whose frequencies, EM distributions and Q factor can be efficiently tuned due to the additional electric dipole mode offered by a central cylinder. To further reveal the underlying coupling effects and formation mechanism of toroidal responses, the multiple scattering theory is adopted. It is found that the first toroidal dipole mode, which can be tuned from 2.21 to 3.55 $mu$m, is mainly induced by a collective electric dipolar resonance, while the second one, which can be tuned from 1.53 to 1.84 $mu$m, relies on the cross coupling of both electric and magnetic dipolar responses. The proposed low-loss metamolecule and modes coupling analyses may pave the way for active design of toroidal responses in advanced optical devices.
Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.
97 - Rujiang Li , Fei Lv , Lu Li 2011
We study light-beam propagation in a nonlinear coupler with an asymmetric double-channel waveguide and derive various analytical forms of optical modes. The results show that the symmetry-preserving modes in a symmetric double-channel waveguide are d eformed due to the asymmetry of the two-channel waveguide, yet such a coupler supports the symmetry-breaking modes. The dispersion relations reveal that the system with self-focusing nonlinear response supports the degenerate modes, while for self-defocusingmedium the degenerate modes do not exist. Furthermore, nonlinear manipulation is investigated by launching optical modes supported in double-channel waveguide into a nonlinear uniform medium.
We present a polarization-insensitive metasurface processor to perform spatial asymmetric filtering of an incident optical beam, thereby allowing for real-time parallel optical processing. To enable massive parallel processing, we introduce a novel M ulti Input-Multi Output (MIMO) computational metasurface with an asymmetric optical response that can perform spatial differentiation on two distinct input signals regardless of their polarization. In our scenario, two distinct signals set in x and y directions, parallel and perpendicular to the incident plane, illuminate simultaneously the metasurface processor, and the resulting differentiated signals are separated from each other via appropriate Spatial Low Pass Filters (SLPF). By leveraging Generalized Sheet Transition Conditions (GSTCs) and surface susceptibility tensors, we design an asymmetric meta-atom augmented with normal susceptibilitiesto reach asymmetric optical response at normal beam illumination. Proof-of-principle simulations are also reported along with the successful realization of signal processing functions. The proposed metasurface overcomes major shortcomings imposed by previous studies such as large architectures arising from the need of additional subblocks, slow responses, and most importantly, supporting only a single input with a given polarization. Our results set the path for future developments of material-based analog computing using efficient and easy-to-fabricate MIMO processors for compact, fast, and integrable computing elements without any Fourier lens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا