ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonating color state and emergent chromodynamics in the kagome antiferromagnet

108   0   0.0 ( 0 )
 نشر من قبل Olivier Cepas
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Cepas




اسأل ChatGPT حول البحث

We argue that the spin-wave breakdown in the Heisenberg kagome antiferromagnet signals an instability of the ground state and leads, through an emergent local constraint, to a quantum dynamics described by a gauge theory similar to that of chromodynamics. For integer spins, we show that the quantum fluctuations of the gauge modes select the sqrt(3)xsqrt(3) Neel state with an on-site moment renormalized by color resonances. We find non-magnetic low-energy excitations that may be responsible for a deconfinement transition at experimentally accessible temperatures which we estimate.



قيم البحث

اقرأ أيضاً

The Kagome Heisenberg antiferromagnet is mapped onto an effective Hamiltonian on the star superlattice by Contractor Renormalization. Comparison of ground state energies on large lattices to Density Matrix Renormalization Group justifies truncation o f effective interactions at range 3. Within our accuracy, magnetic and translational symmetries are not broken (i.e. a spin liquid ground state). However, we discover doublet spectral degeneracies which signal the onset of p6 - chirality symmetry breaking. This is understood by simple mean field analysis. Experimentally, the p6 chiral order parameter should split the optical phonons degeneracy near the zone center. Addition of weak next to nearest neighbor coupling is discussed.
Y{0.5}$Ca{0.5}BaCo4O7 contains kagome layers of Co ions, whose spins are strongly coupled according to a Curie-Weiss temperature of -2200 K. At low temperatures, T = 1.2 K, our diffuse neutron scattering study with polarization analysis reveals chara cteristic spin correlations close to a predicted two-dimensional coplanar ground state with staggered chirality. The absence of three dimensional long-range AF order proves negligible coupling between the kagome layers. The scattering intensities are consistent with high spin S=3/2 states of Co2+ in the kagome layers and low spin S=0 states for Co3+ ions at interlayer sites. Our observations agree with previous Monte Carlo simulations indicating a ground state of only short range chiral order.
We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence of any magnetic ordering down to 20 mK (sim J/10^4). We investigate in detail the spin dynamics on well characterized samples in zero and applied longitudinal fields and propose a low T defect based interpretation to explain the unconventional dynamics observed in the quantum spin liquid phase.
121 - J. Schnack 2019
We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of indepen dent localized magnons or equivalently flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-crystal is expected to be generic for spin models in dimension $D>1$ where flat-band multi-magnon ground states break translational symmetry.
The kagome lattice -- a two-dimensional (2D) arrangement of corner-sharing triangles -- is at the forefront of the search for exotic states generated by magnetic frustration. Such states have been observed experimentally for Heisenberg and planar spi ns. In contrast, frustration of Ising spins on the kagome lattice has previously been restricted to nano-fabricated systems and spin-ice materials under applied magnetic field. Here, we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements, supported by Monte Carlo simulations, reveal a phase transition at T* = 0.3 K from a disordered spin-ice like regime to an emergent charge ordered state in which emergent charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا