ﻻ يوجد ملخص باللغة العربية
The Kagome Heisenberg antiferromagnet is mapped onto an effective Hamiltonian on the star superlattice by Contractor Renormalization. Comparison of ground state energies on large lattices to Density Matrix Renormalization Group justifies truncation of effective interactions at range 3. Within our accuracy, magnetic and translational symmetries are not broken (i.e. a spin liquid ground state). However, we discover doublet spectral degeneracies which signal the onset of p6 - chirality symmetry breaking. This is understood by simple mean field analysis. Experimentally, the p6 chiral order parameter should split the optical phonons degeneracy near the zone center. Addition of weak next to nearest neighbor coupling is discussed.
Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin liquids (QSL). Here, we show that excitations related to singlet brea
We study a short-range resonating valence bond (RVB) wave function with diagonal links on the square lattice that permits sign-problem free wave function Monte-Carlo studies. Special attention is given to entanglement properties, in particular, the s
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is wri
We argue that the spin-wave breakdown in the Heisenberg kagome antiferromagnet signals an instability of the ground state and leads, through an emergent local constraint, to a quantum dynamics described by a gauge theory similar to that of chromodyna
Resonating valence bond (RVB) states are a class of entangled quantum many body wavefunctions with great significance in condensed matter physics. We propose a scheme to synthesize a family of RVB states using a cavity QED setup with two-level atoms