ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiphase Gas In Galaxy Halos: The OVI Lyman-limit System toward J1009+0713

47   0   0.0 ( 0 )
 نشر من قبل Jason Tumlinson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have serendipitously detected a strong O VI-bearing Lyman limit system at z_abs = 0.3558 toward the QSO J1009+0713 (z_em = 0.456) in our survey of low-redshift galaxy halos with the Hubble Space Telescopes Cosmic Origins Spectrograph. Its rest-frame equivalent width of W_r = 835 +/- 49 mA is the highest for an intervening absorber yet detected in any low-redshift QSO sightline, with absorption spanning 400 km s^-1 in its rest frame. HST/WFC3 images of the galaxy field show that the absorber is associated with two galaxies lying at 14 and 46 kpc from the QSO line of sight. The bulk of the absorbing gas traced by H I resides in two strong, blended component groups that possess a total logN(HI) = 18 - 18.8. The ion ratios and column densities of C, N, O, Mg, Si, S, and Fe, except the O VI, can be accommodated into a simple photoionization model in which diffuse, low-metallicity halo gas is exposed to a photoionizing field from stars in the nearby galaxies that propagates into the halo at 10% efficiency. We constrain the metallicity firmly within the range 0.1 - 1 Zsun, and photoionization modeling indirectly indicates a subsolar metallicity of 0.05 - 0.5 Zsun. The appearance of strong O VI and nine Mg II components and our review of similar systems in the literature support the interface picture of high-velocity O VI: the total strength of the O VI shows a positive correlation with the number of detected components in the low-ionization gas, however the total O VI column densities still far exceed the values expected from interface models for the number of detected clouds.

قيم البحث

اقرأ أيضاً

332 - Andrew J. Fox 2011
We present VLT/UVES spectroscopy of the quasar Q0841+129, whose spectrum shows a proximate damped Lyman-alpha (PDLA) absorber at z=2.47621 and a proximate sub-DLA at z=2.50620, both lying close in redshift to the QSO itself at z_em=2.49510+/-0.00003. This fortuitous arrangement, with the sub-DLA acting as a filter that hardens the QSOs ionizing radiation field, allows us to model the ionization level in the foreground PDLA, and provides an interesting case-study on the origin of the high-ion absorption lines Si IV, C IV, and O VI in DLAs. The high ions in the PDLA show at least five components spanning a total velocity extent of ~160 km/s, whereas the low ions exist predominantly in a single component spanning just 30 km/s. We examine various models for the origin of the high ions. Both photoionization and turbulent mixing layer models are fairly successful at reproducing the observed ionic ratios after correcting for the non-solar relative abundance pattern, though neither model can explain all five components. We show that the turbulent mixing layer model, in which the high ions trace the interfaces between the cool PDLA gas and a hotter phase of shock-heated plasma, can explain the average high-ion ratios measured in a larger sample of 12 DLAs.
A deep Chandra observation of the X-ray bright group, NGC 5044, shows that the central region of this group has been strongly perturbed by repeated AGN outbursts. These recent AGN outbursts have produced many small X-ray cavities, cool filaments and cold fronts. We find a correlation between the coolest X-ray emitting gas and the morphology of the Ha filaments. The Ha filaments are oriented in the direction of the X-ray cavities, suggesting that the warm gas responsible for the Halpha emission originated near the center of NGC 5044 and was dredged up behind the buoyant, AGN-inflated X-ray cavities. A detailed spectroscopic analysis shows that the central region of NGC 5044 contains spatially varying amounts of multiphase gas. The regions with the most inhomogeneous gas temperature distribution tend to correlate with the extended 235 MHz and 610 MHz radio emission detected by the GMRT. This may result from gas entrainment within the radio emitting plasma or mixing of different temperature gas in the regions surrounding the radio emitting plasma by AGN induced turbulence. Accounting for the effects of multiphase gas, we find that the abundance of heavy elements is fairly uniform within the central 100 kpc, with abundances of 60-80% solar for all elements except oxygen, which has a significantly sub-solar abundance. In the absence of continued AGN outbursts, the gas in the center of NGC 5044 should attain a more homogeneous distribution of gas temperature through the dissipation of turbulent kinetic energy and heat conduction in approximately 10e8 yr. The presence of multiphase gas in NGC 5044 indicates that the time between recent AGN outbursts has been less than approximately 10e8 yr.
We present ALMA rest-frame 230 GHz continuum and CO(2-1) line observations of the nearby Compton-thick Seyfert galaxy ESO428-G14, with angular resolution 0.7 arcsec (78 pc). We detect CO(2-1) emission from spiral arms and a circum-nuclear ring with 2 00 pc radius, and from a transverse gas lane with size of $sim100$ pc, which crosses the nucleus and connects the two portions the circumnuclear ring. The molecular gas in the host galaxy is distributed in a rotating disk with intrinsic circular velocity $v_{rot}=135$ km/s, inclination $i=57$ deg, and dynamical mass $M_{dyn }=5times 10^9~rm M_{odot}$ within a radius of $sim 1$ kpc. In the inner 100 pc region CO is distributed in a equatorial bar, whose kinematics is highly perturbed and consistent with an inflow of gas towards the AGN. This inner CO bar overlaps with the most obscured, Compton-thick region seen in X-rays. We derive a column density of $rm N(H_2) approx 2times10^{23}~ cm^{-2}$ in this region, suggesting that molecular gas may contribute significantly to the AGN obscuration. We detect a molecular outflow with a total outflow rate $rm dot M_{of}approx 0.8~M_{odot}/yr$, distributed along a bi-conical structure with size of $700$ pc on both sides of the AGN. The bi-conical outflow is also detected in the $rm H_2$ emission line at 2.12 $mu$m, which traces a warmer nuclear outflow located within 170 pc from the AGN. This suggests that the outflow cools with increasing distance from the AGN. We find that the hard X-ray emitting nuclear region mapped with Chandra is CO-deprived, but filled with warm molecular gas traced by $rm H_2$ - thus confirming that the hard (3-6 keV) continuum and Fe K$alpha$ emission are due to scattering from dense neutral clouds in the ISM.
103 - Kyle R. Stewart 2013
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms cold flow disks. We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا