ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiphase gas flows in the nearby Seyfert galaxy ESO428-G14

56   0   0.0 ( 0 )
 نشر من قبل Chiara Feruglio
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ALMA rest-frame 230 GHz continuum and CO(2-1) line observations of the nearby Compton-thick Seyfert galaxy ESO428-G14, with angular resolution 0.7 arcsec (78 pc). We detect CO(2-1) emission from spiral arms and a circum-nuclear ring with 200 pc radius, and from a transverse gas lane with size of $sim100$ pc, which crosses the nucleus and connects the two portions the circumnuclear ring. The molecular gas in the host galaxy is distributed in a rotating disk with intrinsic circular velocity $v_{rot}=135$ km/s, inclination $i=57$ deg, and dynamical mass $M_{dyn }=5times 10^9~rm M_{odot}$ within a radius of $sim 1$ kpc. In the inner 100 pc region CO is distributed in a equatorial bar, whose kinematics is highly perturbed and consistent with an inflow of gas towards the AGN. This inner CO bar overlaps with the most obscured, Compton-thick region seen in X-rays. We derive a column density of $rm N(H_2) approx 2times10^{23}~ cm^{-2}$ in this region, suggesting that molecular gas may contribute significantly to the AGN obscuration. We detect a molecular outflow with a total outflow rate $rm dot M_{of}approx 0.8~M_{odot}/yr$, distributed along a bi-conical structure with size of $700$ pc on both sides of the AGN. The bi-conical outflow is also detected in the $rm H_2$ emission line at 2.12 $mu$m, which traces a warmer nuclear outflow located within 170 pc from the AGN. This suggests that the outflow cools with increasing distance from the AGN. We find that the hard X-ray emitting nuclear region mapped with Chandra is CO-deprived, but filled with warm molecular gas traced by $rm H_2$ - thus confirming that the hard (3-6 keV) continuum and Fe K$alpha$ emission are due to scattering from dense neutral clouds in the ISM.

قيم البحث

اقرأ أيضاً

85 - J. S. Arabadjis 2003
We present a spectral analysis of the central X-ray emission for a sample of galaxy clusters observed with Chandra. We constrain the quantity of a second cospatial temperature component using Markov Chain Monte Carlo sampling and discuss the implications for our understanding of cooling flows.
We present the analysis of the ALMA CO(2-1) emission line and the underlying 1.2 mm continuum of Mrk509 with spatial resolution of 270 pc. This local Seyfert 1.5 galaxy, optically classified as a spheroid, is known to host a ionised disc, a starburst ring, and ionised gas winds on both nuclear and galactic scales. From CO(2-1) we estimate a molecular gas mass $M_{H_2}=1.7times 10^9, rm M_{odot}$, located within a disc of size 5.2 kpc, with $M_{dyn}$=(2.0$pm$1.1) $times$ $10^{10}, rm M_{odot}$ inclined at $44pm10$ deg. The molecular gas fraction within the disc is $mu_{gas}=5%$. The gas kinematics in the nuclear region within r=700 pc suggests the presence of a warped nuclear disc. Both the presence of a molecular disc with ongoing star-formation in a starburst ring, and the signatures of a minor merger, are in agreement with the scenario where galaxy mergers produce gas destabilization, feeding both star-formation and AGN activity. The spatially-resolved Toomre Q-parameter across the molecular disc is in the range $Q_{gas}=0.5-10$, and shows that the disc is marginally unstable across the starburst ring, and stable at nucleus and in a lopsided ring-like structure located inside of the starburst ring. We find complex molecular gas kinematics and significant kinematics perturbations at two locations, one within 300 pc from the nucleus, and one 1.4 kpc away close to the region with high $Q_{gas}$, that we interpret as molecular winds. The total molecular outflow rate is in the range 6.4-17.0 $rm M_odot/yr$. The molecular wind total kinetic energy is consistent with a multiphase momentum-conserving wind driven by the AGN with $dot{P}_{of}/dot{P}_{rad}$ in the range 0.06-0.5. The spatial overlap of the inner molecular wind with the ionised wind, and their similar velocity suggest a cooling sequence within a multiphase AGN driven wind.
We present the results of a recent reverberation mapping campaign for UGC 06728, a nearby low-luminosity Seyfert 1 in a late-type galaxy. Nightly monitoring in the spring of 2015 allowed us to determine an H$beta$ time delay of $tau = 1.4 pm 0.8$ day s. Combined with the width of the variable H$beta$ line profile, we determine a black hole mass of $M_{rm BH} = (7.1 pm 4.0) times 10^5$ M$_{odot}$. We also constrain the bulge stellar velocity dispersion from higher-resolution long slit spectroscopy along the galaxy minor axis and find $sigma_{star} = 51.6 pm 4.9$ km s$^{-1}$. The measurements presented here are in good agreement with both the $R_{rm BLR} - L$ relationship and the $M_{rm BH}-sigma_{star}$ relationship for AGNs. Combined with a previously published spin measurement, our mass determination for UGC 06728 makes it the lowest-mass black hole that has been fully characterized, and thus an important object to help anchor the low-mass end of black hole evolutionary models.
We present the analysis of the molecular gas in the nuclear regions of NGC 4968, NGC 4845, and MCG-06-30-15, with the help of ALMA observations of the CO(2-1) emission line. The aim is to determine the kinematics of the gas in the central (~ 1 kpc) r egion. We use the 3D-Based Analysis of Rotating Object via Line Observations ($^{3D}$BAROLO) and DiskFit softwares. Circular motions dominate the kinematics of the gas in the central discs, mainly in NGC 4845 and MCG-06-30-15, however there is a clear evidence of non-circular motions in the central ($sim$ 1 kpc) region of NGC 4845 and NGC 4968. The strongest non-circular motion is detected in the inner disc of NGC 4968 with velocity $sim 115, rm{km,s^{-1}}$. The bisymmetric model is found to give the best-fit for NGC 4968 and NGC 4845. If the dynamics of NGC 4968 is modeled as a corotation pattern just outside of the bar, the bar pattern speed turns out to be at $Omega_b$ = $52, rm{km,s^{-1},kpc^{-1}}$ the corotation is set at 3.5 kpc and the inner Lindblad resonance (ILR) ring at R = 300pc corresponding to the CO emission ring. The 1.2 mm ALMA continuum is peaked and compact in NGC 4968 and MCG-06-30-15, but their CO(2-1) has an extended distribution. Allowing the CO-to-H$_{2}$ conversion factor $alpha_{CO}$ between 0.8 and 3.2, typical of nearby galaxies of the same type, the molecular mass M(H$_{2}$) is estimated to be $sim 3-12times 10^{7} ~{rm M_odot}$ (NGC 4968), $sim 9-36times 10^{7}~ {rm M_odot}$ (NGC 4845), and $sim 1-4times 10^{7}~ {rm M_odot}$ (MCG-06-30-15). We conclude that the observed non-circular motions in the disc of NGC 4968 and likely that seen in NGC 4845 is due to the presence of the bar in the nuclear region. At the current spectral and spatial resolution and sensitivity we cannot claim any strong evidence in these sources of the long sought feedback/feeding effect due to the AGN presence.
The study of 21cm line observations of atomic hydrogen allows detailed insight into the kinematics of spiral galaxies. We use sensitive high-resolution VLA data from The HI Nearby Galaxy Survey (THINGS) to search for radial gas flows primarily in the outer parts (up to $3times r_{25}$) of ten nearby spiral galaxies. Inflows are expected to replenish the gas reservoir and fuel star formation under the assumption that galaxies evolve approximately in steady state. We carry out a detailed investigation of existing tilted ring fitting schemes and discover systematics that can hamper their ability to detect signatures of radial flows. We develop a new Fourier decomposition scheme that fits for rotational and radial velocities and simultaneously determines position angle and inclination as a function of radius. Using synthetic velocity fields we show that our novel fitting scheme is less prone to such systematic errors and that it is well suited to detect radial inflows in disks. We apply our fitting scheme to ten THINGS galaxies and find clear indications of, at least partly previously unidentified, radial gas flows, in particular for NGC 2403 and NGC 3198 and to a lesser degree for NGC 7331, NGC 2903 and NGC 6946. The mass flow rates are of the same order but usually larger than the star formation rates. At least for these galaxies a scenario in which continuous mass accretion feeds star formation seems plausible. The other galaxies show a more complicated picture with either no clear inflow, outward motions or complex kinematic signatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا