ﻻ يوجد ملخص باللغة العربية
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots lead to nuclear spin polarization that is qualitatively different from the well known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from non-collinear hyperfine interaction and find an excellent agreement between the experimental results and the theoretical model.
We report on the direct measurement of the electron spin splitting and the accompanying nuclear Overhauser (OH) field, and thus the underlying nuclear spin polarization (NSP) and fluctuation bandwidth, in a single InAs quantum dot under resonant exci
We report a new transport feature in a GaAs lateral double quantum dot that emerges only for magnetic field sweeps and shows hysteresis due to dynamic nuclear spin polarization (DNP). This DNP signal appears in the Coulomb blockade regime by virtue o
We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov
The central-spin problem, in which an electron spin interacts with a nuclear spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear polarization (DNP) occurs in central spin systems when electronic angular momentum is transferre
Coherent two-level systems, or qubits, based on electron spins in GaAs quantum dots are strongly coupled to the nuclear spins of the host lattice via the hyperfine interaction. Realizing nuclear spin control would likely improve electron spin coheren