ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator algebras from the discrete Heisenberg semigroup

103   0   0.0 ( 0 )
 نشر من قبل Ivan Todorov
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study reflexivity and structure properties of operator algebras generated by representations of the discrete Heisenberg semi-group. We show that the left regular representation of this semi-group gives rise to a semi-simple reflexive algebra. We exhibit an example of a representation which gives rise to a non-reflexive algebra. En route, we establish reflexivity results for subspaces of $H^{infty}(bb{T})otimescl B(cl H)$.

قيم البحث

اقرأ أيضاً

The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to genera l (possibly non-self-adjoint) operator algebras. While numerous subtleties emerge in this greater generality, we exhibit novel tools for constructing finite-dimensional approximations. One such tool is a notion of a residually finite-dimensional coaction of a semigroup on an operator algebra, which allows us to construct finite-dimensional approximations for operator algebras of functions and operator algebras of semigroups. Our investigation is intimately related to the question of whether residual finite-dimensionality of an operator algebra is inherited by its maximal $mathrm{C}^*$-cover, which we resolve in many cases of interest.
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Aglers theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.
We study subproduct systems in the sense of Shalit and Solel arising from stochastic matrices on countable state spaces, and their associated operator algebras. We focus on the non-self-adjoint tensor algebra, and Viselters generalization of the Cunt z-Pimsner C*-algebra to the context of subproduct systems. Suppose that $X$ and $Y$ are Arveson-Stinespring subproduct systems associated to two stochastic matrices over a countable set $Omega$, and let $mathcal{T}_+(X)$ and $mathcal{T}_+(Y)$ be their tensor algebras. We show that every algebraic isomorphism from $mathcal{T}_+(X)$ onto $mathcal{T}_+(Y)$ is automatically bounded. Furthermore, $mathcal{T}_+(X)$ and $mathcal{T}_+(Y)$ are isometrically isomorphic if and only if $X$ and $Y$ are unitarily isomorphic up to a *-automorphism of $ell^infty(Omega)$. When $Omega$ is finite, we prove that $mathcal{T}_+(X)$ and $mathcal{T}_+(Y)$ are algebraically isomorphic if and only if there exists a similarity between $X$ and $Y$ up to a *-automorphism of $ell^infty(Omega)$. Moreover, we provide an explicit description of the Cuntz-Pimsner algebra $mathcal{O}(X)$ in the case where $Omega$ is finite and the stochastic matrix is essential.
We study comparison properties in the category Cu aiming to lift results to the C*-algebraic setting. We introduce a new comparison property and relate it to both the CFP and $omega$-comparison. We show differences of all properties by providing exam ples, which suggest that the corona factorization property for C*-algebras might allow for both finite and infinite projections. In addition, we show that R{o}rdams simple, nuclear C*-algebra with a finite and an infinite projection does not have the CFP.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا