ﻻ يوجد ملخص باللغة العربية
Starting with a vertex-weighted pointed graph $(Gamma,mu,v_0)$, we form the free loop algebra $mathcal{S}_0$ defined in Hartglass-Penneys article on canonical $rm C^*$-algebras associated to a planar algebra. Under mild conditions, $mathcal{S}_0$ is a non-nuclear simple $rm C^*$-algebra with unique tracial state. There is a canonical polynomial subalgebra $Asubset mathcal{S}_0$ together with a Dirac number operator $N$ such that $(A, L^2A,N)$ is a spectral triple. We prove the Haagerup-type bound of Ozawa-Rieffel to verify $(mathcal{S}_0, A, N)$ yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini-Schramm convergence for vertex-weighted pointed graphs. As our $rm C^*$-algebras are non-nuclear, we adjust the Lip-norm coming from $N$ to utilize the finite dimensional filtration of $A$. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov-Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet-Jones-Shyakhtenko (GJS) $rm C^*$-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS $rm C^*$-algebras of many infinite families of planar algebras converge in quantum Gromov-Hausdorff distance.
We show that any quantum family of maps from a non commutative space to a compact quantum metric space has a canonical quantum semi metric structure.
We formulate a definition of isometric action of a compact quantum group (CQG) on a compact metric space, generalizing Banicas definition for finite metric spaces. For metric spaces $(X,d)$ which can be isometrically embedded in some Euclidean space,
We prove that a compact quantum group with faithful Haar state which has a faithful action on a compact space must be a Kac algebra, with bounded antipode and the square of the antipode being identity. The main tool in proving this is the theory of e
For a closed cocompact subgroup $Gamma$ of a locally compact group $G$, given a compact abelian subgroup $K$ of $G$ and a homomorphism $rho:hat{K}to G$ satisfying certain conditions, Landstad and Raeburn constructed equivariant noncommutative deforma
Motivated by noncommutative geometry and quantum physics, the concept of `metric operator field is introduced. Roughly speaking, a metric operator field is a vector field on a set with values in self tensor product of a bundle of C*-algebras, satisfy