ﻻ يوجد ملخص باللغة العربية
We study the one-dimensional Levy stable density distributions g(alpha, beta; x) for -infty < x < infty, for rational values of index alpha and the asymmetry parameter beta: alpha = l/k and beta = (l - 2r)/k, where l, k and r are positive integers such that 0 < l/k < 1 for 0 <= r <= l and 1 < l/k <= 2 for l-k <= r <= k. We treat both symmetric (beta = 0) and asymmetric (beta neq 0) cases. We furnish exact and explicit forms of g(alpha, beta; x) in terms of known functions for any admissible values of alpha and beta specified by a triple of integers k, l and r. We reproduce all the previously known exact results and we study analytically and graphically many new examples. We point out instances of experimental and statistical data that could be described by our solutions.
Random matrix theory is used to assess the significance of weak correlations and is well established for Gaussian statistics. However, many complex systems, with stock markets as a prominent example, exhibit statistics with power-law tails, that can
The functional method to derive the fractional Fokker-Planck equation for probability distribution from the Langevin equation with Levy stable noise is proposed. For the Cauchy stable noise we obtain the exact stationary probability density function
A version of the saddle point method is developed, which allows one to describe exactly the asymptotic behavior of distribution densities of Levy driven stochastic integrals with deterministic kernels. Exact asymptotic behavior is established for (a)
Levy Flights are paradigmatic generalised random walk processes, in which the independent stationary increments---the jump lengths---are drawn from an $alpha$-stable jump length distribution with long-tailed, power-law asymptote. As a result, the var
We consider a stochastic volatility model with Levy jumps for a log-return process $Z=(Z_{t})_{tgeq 0}$ of the form $Z=U+X$, where $U=(U_{t})_{tgeq 0}$ is a classical stochastic volatility process and $X=(X_{t})_{tgeq 0}$ is an independent Levy proce