ﻻ يوجد ملخص باللغة العربية
We consider a stochastic volatility model with Levy jumps for a log-return process $Z=(Z_{t})_{tgeq 0}$ of the form $Z=U+X$, where $U=(U_{t})_{tgeq 0}$ is a classical stochastic volatility process and $X=(X_{t})_{tgeq 0}$ is an independent Levy process with absolutely continuous Levy measure $ u$. Small-time expansions, of arbitrary polynomial order, in time-$t$, are obtained for the tails $bbp(Z_{t}geq z)$, $z>0$, and for the call-option prices $bbe(e^{z+Z_{t}}-1)_{+}$, $z eq 0$, assuming smoothness conditions on the {PaleGrey density of $ u$} away from the origin and a small-time large deviation principle on $U$. Our approach allows for a unified treatment of general payoff functions of the form $phi(x){bf 1}_{xgeq{}z}$ for smooth functions $phi$ and $z>0$. As a consequence of our tail expansions, the polynomial expansions in $t$ of the transition densities $f_{t}$ are also {Green obtained} under mild conditions.
Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another
In this paper, a pricing formula for volatility swaps is delivered when the underlying asset follows the stochastic volatility model with jumps and stochastic intensity. By using Feynman-Kac theorem, a partial integral differential equation is obtain
In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been s
In the present paper, a decomposition formula for the call price due to Al`{o}s is transformed into a Taylor type formula containing an infinite series with stochastic terms. The new decomposition may be considered as an alternative to the decomposit
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a