ﻻ يوجد ملخص باللغة العربية
The functional method to derive the fractional Fokker-Planck equation for probability distribution from the Langevin equation with Levy stable noise is proposed. For the Cauchy stable noise we obtain the exact stationary probability density function of Levy flights in different smooth potential profiles. We find confinement of the particle in the superdiffusion motion with a bimodal stationary distribution for all the anharmonic symmetric monostable potentials investigated. The stationary probability density functions show power-law tails, which ensure finiteness of the variance. By reviewing recent results on these statistical characteristics, the peculiarities of Levy flights in comparison with ordinary Brownian motion are discussed.
Properties of systems driven by white non-Gaussian noises can be very different from these systems driven by the white Gaussian noise. We investigate stationary probability densities for systems driven by $alpha$-stable Levy type noises, which provid
Among Markovian processes, the hallmark of Levy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Levy laws, as well as Gaussians, can also be the limit distributions of processes with long range memory that exhibit very
The exact formulae for spectra of equilibrium diffusion in a fixed bistable piecewise linear potential and in a randomly flipping monostable potential are derived. Our results are valid for arbitrary intensity of driving white Gaussian noise and arbi
Let L(t) be a Levy flights process with a stability index alphain(0,2), and U be an external multi-well potential. A jump-diffusion Z satisfying a stochastic differential equation dZ(t)=-U(Z(t-))dt+sigma(t)dL(t) describes an evolution of a Levy parti
Levy flights are known to be optimal search strategies in the particular case of revisitable targets. In the relevant situation of non revisitable targets, we propose an alternative model of bidimensional search processes, which explicitly relies on