ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonholonomic constrains: why does not the least action principle leads to equations describing the motion consistent with the physical behaviour?

200   0   0.0 ( 0 )
 نشر من قبل Umberto Lucia prof.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Umberto Lucia




اسأل ChatGPT حول البحث

The least action principle seems not to lead to equations describing the motion consistent with the physical behavior for nonholonomic constrains. Here an answer to this question in proposed.


قيم البحث

اقرأ أيضاً

Protective measurement refers to two related schemes for finding the expectation value of an observable without disturbing the state of a quantum system, given a single copy of the system that is subject to a protecting operation. There have been sev eral claims that these schemes support interpreting the quantum state as an objective property of a single quantum system. Here we provide three counter-arguments, each of which we present in t
66 - Chang Q Sun 2020
The segmental specific heat ratio of the couple hydrogen bond defines not only the phase of Vapor, Liquid, Ice I and XI phase with a quasisolid phase that shows the negative thermal extensibility but uniquely the slope of density of water ice in diff erent phases. Ice floats because H-O contracts less than O:H expands in the QS phase at cooling.
In this work we consider some consequences of the Bohr-Sommerfeld-Hansson (Old or quasi-classical) quantum theory of the Newtonian gravity, i.e. of the gravitational atom. We prove that in this case (for gravitational central force and quantized angu lar momentum) centrifugal acceleration becomes formally-theoretically dependent (proportional to fourth degree) of the mass of gravitational electron rotating around gravitational nucleus for any quantum number (state). It seemingly leads toward a paradoxical breaking of the relativistic equivalence principle which contradicts to real experimental data. We demonstrate that this equivalence principle breaking does not really appear in the (quasi classical) quantum theory, but that it necessary appears only in a hypothetical extension of the quantum theory that needs a classical like interpretation of the Bohr-Sommerfeld angular momentum quantization postulate. It is, in some sense, similar to Bell-Aspect analysis that points out that a hypothetical deterministic extension of the quantum mechanics, in distinction to usual quantum mechanics, can reproduce experimental data if and only if it is non-local (superluminal) in contradiction with relativistic locality (luminality) principle.
In 1717 Halley compared contemporaneous measurements of the latitudes of four stars with earlier measurements by ancient Greek astronomers and by Brahe, and from the differences concluded that these four stars showed proper motion. An analysis with m odern methods shows that the data used by Halley do not contain significant evidence for proper motion. What Halley found are the measurement errors of Ptolemaios and Brahe. Halley further argued that the occultation of Aldebaran by the Moon on 11 March 509 in Athens confirmed the change in latitude of Aldebaran. In fact, however, the relevant observation was almost certainly made in Alexandria where Aldebaran was not occulted. By carefully considering measurement errors Jacques Cassini showed that Halleys results from comparison with earlier astronomers were spurious, a conclusion partially confirmed by various later authors. Cassinis careful study of the measurements of the latitude of Arcturus provides the first significant evidence for proper motion.
109 - B. Megyeri , A. Lampis , G. Harvie 2017
We discuss the prospects for enhancing absorption and scattering of light from a weakly coupled atom in a high-finesse optical cavity by adding a medium with large, positive group index of refraction. The slow-light effect is known to narrow the cavi ty transmission spectrum and increase the photon lifetime, but the quality factor of the cavity may not be increased in a metrologically useful sense. Specifically, detection of the weakly coupled atom through either cavity ringdown measurements or the Purcell effect fails to improve with the addition of material slow light. A single-atom model of the dispersive medium helps elucidate why this is the case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا