ﻻ يوجد ملخص باللغة العربية
We discuss the prospects for enhancing absorption and scattering of light from a weakly coupled atom in a high-finesse optical cavity by adding a medium with large, positive group index of refraction. The slow-light effect is known to narrow the cavity transmission spectrum and increase the photon lifetime, but the quality factor of the cavity may not be increased in a metrologically useful sense. Specifically, detection of the weakly coupled atom through either cavity ringdown measurements or the Purcell effect fails to improve with the addition of material slow light. A single-atom model of the dispersive medium helps elucidate why this is the case.
We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 10,000 atoms, to reject technical noise sources, to achi
We investigate the prospects of using two-mode intensity squeezed twin-beams, generated in Rb vapor, to improve the sensitivity of spectroscopic measurements by engaging two-photon Raman transitions. As a proof of principle demonstration, we demonstr
The segmental specific heat ratio of the couple hydrogen bond defines not only the phase of Vapor, Liquid, Ice I and XI phase with a quasisolid phase that shows the negative thermal extensibility but uniquely the slope of density of water ice in diff
We report on improvements extending the capabilities of the atom-by-atom assembler described in [Barredo et al., Science 354, 1021 (2016)] that we use to create fully-loaded target arrays of more than 100 single atoms in optical tweezers, starting fr
The propagation of light in moving media is dragged by atomic motion. The light-drag effect can be dramatically enhanced by reducing the group velocity with electro-magnetically induced transparency. We demonstrate a systematic procedure to estimate