ﻻ يوجد ملخص باللغة العربية
In this work we consider some consequences of the Bohr-Sommerfeld-Hansson (Old or quasi-classical) quantum theory of the Newtonian gravity, i.e. of the gravitational atom. We prove that in this case (for gravitational central force and quantized angular momentum) centrifugal acceleration becomes formally-theoretically dependent (proportional to fourth degree) of the mass of gravitational electron rotating around gravitational nucleus for any quantum number (state). It seemingly leads toward a paradoxical breaking of the relativistic equivalence principle which contradicts to real experimental data. We demonstrate that this equivalence principle breaking does not really appear in the (quasi classical) quantum theory, but that it necessary appears only in a hypothetical extension of the quantum theory that needs a classical like interpretation of the Bohr-Sommerfeld angular momentum quantization postulate. It is, in some sense, similar to Bell-Aspect analysis that points out that a hypothetical deterministic extension of the quantum mechanics, in distinction to usual quantum mechanics, can reproduce experimental data if and only if it is non-local (superluminal) in contradiction with relativistic locality (luminality) principle.
General Relativity has had tremendous successes on both theoretical and experimental fronts for over a century by now. However, the theory contents are far from being exhausted. Only very recently, with gravitational wave detection from colliding bla
In the first part of this work we apply Bohr (old or naive quantum atomic) theory for analysis of the remarkable electro-dynamical problem of magnetic monopoles. We reproduce formally exactly some basic elements of the Dirac magnetic monopoles theory
The equivalence principle was formulated by Einstein in an attempt to extend the concept of inertial frames to accelerated frames, thereby bringing in gravity. In recent decades, it has been realised that gravity is linked not only with geometry of s
General Relativity is today the best theory of gravity addressing a wide range of phenomena. Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated without taking into account it. It is based on one of the m
Are Dark Matter and Dark Energy the result of uncalculated addition derivatives? The need to introduce dark matter dark and energy becomes unnecessary if we consider that, the phenomenon of dark matter and dark energy is a result of not computing the