ﻻ يوجد ملخص باللغة العربية
We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio data from Phoenix-2 and the Nanc{c}ay radioheliograph, the outward transport of flare accelerated electrons is analyzed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around 50 Mm and 10 Mm respectively. The inferred acceleration height and size suggests that electrons are accelerated well above the soft X-ray loop-top, which could be consistent with the electron acceleration between 40 Mm and 60 Mm above the flaring loop.
We present the results of simultaneous radio and X-ray observations of PSR J1819-1458. Our 94-ks XMM-Newton observation of the high magnetic field 5*10^13 G pulsar reveals a blackbody spectrum (kT~130 eV) with a broad absorption feature, possibly com
We study the release of energy during the gradual phase of a flare, characterized by faint bursts of non-thermal hard X-ray (HXR) emission associated with decimetric radio spikes and type III radio bursts starting at high frequencies and extending to
Nonthermal sources located above bright flare arcades, referred to as the above-the-loop-top sources, have been often suggested as the primary electron acceleration site in major solar flares. The X8.2 limb flare on 2017 September 10 features such an
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with
Solar flares are sudden energy release events in the solar corona, resulting from magnetic reconnection, that accelerates particles and heats the ambient plasma. During a flare, there are often multiple, temporally and spatially separated individual