ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic Electron Distribution of the Coronal Acceleration Region: First results from Joint Microwave and Hard X-ray Imaging Spectroscopy

126   0   0.0 ( 0 )
 نشر من قبل Bin Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bin Chen




اسأل ChatGPT حول البحث

Nonthermal sources located above bright flare arcades, referred to as the above-the-loop-top sources, have been often suggested as the primary electron acceleration site in major solar flares. The X8.2 limb flare on 2017 September 10 features such an above-the-loop-top source, which was observed in both microwaves and hard X-rays (HXRs) by the Expanded Owens Valley Solar Array (EOVSA) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), respectively. By combining the microwave and HXR imaging spectroscopy observations with multi-filter extreme ultraviolet and soft X-ray imaging data, we derive the energetic electron distribution of this source over a broad energy range from $<$10 keV up to $sim$MeV during the early impulsive phase of the flare. The best-fit electron distribution consists of a thermal core from $sim$25 MK plasma. Meanwhile, a nonthermal power-law tail joins the thermal core at $sim$16 keV with a spectral index of $sim$3.6, which breaks down at above $sim$160 keV to $>$6.0. In addition, temporally resolved analysis suggests that the electron distribution above the break energy rapidly hardens with the spectral index decreasing from $>$20 to $sim$6.0 within 20 s, or less than $sim$10 Alfv{e}n crossing times in the source. These results provide strong support for the above-the-loop-top source as the primary site where an on-going bulk acceleration of energetic electrons is taking place very early in the flare energy release.



قيم البحث

اقرأ أيضاً

We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio da ta from Phoenix-2 and the Nanc{c}ay radioheliograph, the outward transport of flare accelerated electrons is analyzed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around 50 Mm and 10 Mm respectively. The inferred acceleration height and size suggests that electrons are accelerated well above the soft X-ray loop-top, which could be consistent with the electron acceleration between 40 Mm and 60 Mm above the flaring loop.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion bremsstrahlung, photoelectric absorption and Compton back-scatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons using albedo, improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data.
We study the nature of energy release and transfer for two sub-A class solar microflares observed during the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2) sounding rocket experiment on 2014 December 11. FOXSI is the first solar-de dicated instrument to utilize focusing optics to image the Sun in the hard X-ray (HXR) regime, sensitive to the energy range 4-20 keV. Through spectral analysis of the two microflares using an optically thin isothermal plasma model, we find evidence for plasma heated to temperatures of ~10 MK and emissions measures down to ~$10^{44}~$cm$^{-3}$. Though nonthermal emission was not detected for the FOXSI-2 microflares, a study of the parameter space for possible hidden nonthermal components shows that there could be enough energy in nonthermal electrons to account for the thermal energy in microflare 1, indicating that this flare is plausibly consistent with the standard thick-target model. With a solar-optimized design and improvements in HXR focusing optics, FOXSI-2 offers approximately five times greater sensitivity at 10 keV than the Nuclear Spectroscopic Telescope Array (NuSTAR) for typical microflare observations and allows for the first direct imaging spectroscopy of solar HXRs with an angular resolution at scales relevant for microflares. Harnessing these improved capabilities to study the evolution of small-scale events, we find evidence for spatial and temporal complexity during a sub-A class flare. These studies in combination with contemporanous observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) indicate that the evolution of these small microflares is more similar to that of large flares than to the single burst of energy expected for a nanoflare.
How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe.
We present results from the the first campaign of dedicated solar observations undertaken by the textit{Nuclear Spectroscopic Telescope ARray} ({em NuSTAR}) hard X-ray telescope. Designed as an astrophysics mission, {em NuSTAR} nonetheless has the ca pability of directly imaging the Sun at hard X-ray energies ($>$3~keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where textit{NuSTAR} will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with textit{NuSTAR}, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, hard X-ray emission from high in the solar corona, and full-disk hard X-ray images of the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا