ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare

86   0   0.0 ( 0 )
 نشر من قبل Rohit Sharma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares are sudden energy release events in the solar corona, resulting from magnetic reconnection, that accelerates particles and heats the ambient plasma. During a flare, there are often multiple, temporally and spatially separated individual energy release episodes that can be difficult to resolve depending on the observing instrument. We present multi-wavelength imaging and spectroscopy observations of multiple electron acceleration episodes during a GOES B1.7-class two-ribbon flare on 2012 February 25, observed simultaneously with the Karl G. Jansky Very Large Array (VLA) at 1--2 GHz, the Reuven Ramatay High Energy Solar Spectroscopic Imager (RHESSI) in X-rays, and the Solar Dynamics Observatory in extreme ultraviolet (EUV). During the initial phase of the flare, five radio bursts were observed. A nonthermal X-ray source was seen co-temporal, but not co-spatial, with the first three radio bursts. Their radio spectra are interpreted as optically thick gyrosynchrotron emission. By fitting the radio spectra with a gyrosynchrotron model, we derive the magnetic field strength and nonthermal electron spectral parameters in each acceleration episode. Notably, the nonthermal parameters derived from X-rays differ considerably from the nonthermal parameters inferred from the radio. The observations are indicative of multiple, co-temporal acceleration episodes during the impulsive phase of a solar microflare. The X-ray and radio burst sources likely originate from separate electron distributions in different magnetic loops.



قيم البحث

اقرأ أيضاً

Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry $10^{21}$ to $10^{24}$ erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from $10^{20}$ to $10^{23}$ ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.
We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio da ta from Phoenix-2 and the Nanc{c}ay radioheliograph, the outward transport of flare accelerated electrons is analyzed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around 50 Mm and 10 Mm respectively. The inferred acceleration height and size suggests that electrons are accelerated well above the soft X-ray loop-top, which could be consistent with the electron acceleration between 40 Mm and 60 Mm above the flaring loop.
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, CMEs, eruptive filaments, and various scales of jets. The different kinds of flares may have different character istics of energy and spectral distribution. In this work, we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behavior and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves, and X-ray observations of GOES, RHESSI, and Fermi/GBM. We found that: All the confined flare events were associated with a microwave continuum burst extending to frequencies of 9.4 - 15.4 GHz, and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz. The median value is around 9 GHz. The microwave burst energy (or fluence) as well as the peak frequency are found to provide useful criteria to estimate the power of solar flares. The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al. 2004. All 10 events studied did not produce detectable hard X-rays with energies above 300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.
The Spectrometer/Telescope for Imaging X-rays (STIX) is the HXR instrument onboard Solar Orbiter designed to observe solar flares over a broad range of flare sizes, between 4-150 keV. We report the first STIX observations of microflares recorded duri ng the instrument commissioning phase in order to investigate the STIX performance at its detection limit. This first result paper focuses on the temporal and spectral evolution of STIX microflares occuring in the AR12765 in June 2020, and compares the STIX measurements with GOES/XRS, SDO/AIA, and Hinode/XRT. For the observed microflares of the GOES A and B class, the STIX peak time at lowest energies is located in the impulsive phase of the flares, well before the GOES peak time. Such a behavior can either be explained by the higher sensitivity of STIX to higher temperatures compared to GOES, or due to the existence of a nonthermal component reaching down to low energies. The interpretation is inconclusive due to limited counting statistics for all but the largest flare in our sample. For this largest flare, the low-energy peak time is clearly due to thermal emission, and the nonthermal component seen at higher energies occurs even earlier. This suggests that the classic thermal explanation might also be favored for the majority of the smaller flares. In combination with EUV and SXR observations, STIX corroborates earlier findings that an isothermal assumption is of limited validity. Future diagnostic efforts should focus on multi-wavelength studies to derive differential emission measure distributions over a wide range of temperatures to accurately describe the energetics of solar flares. Commissioning observations confirm that STIX is working as designed. As a rule of thumb, STIX detects flares as small as the GOES A class. For flares above the GOES B class, detailed spectral and imaging analyses can be performed.
We present the first joint observation of a small microflare in X-rays with the Nuclear Spectroscopic Telescope ARray (NuSTAR), UV with the Interface Region Imaging Spectrograph (IRIS) and EUV with the Solar Dynamics Observatory/Atmospheric Imaging A ssembly (SDO/AIA). These combined observations allows us to study the microflares hot coronal and cooler chromospheric/transition region emission. This small microflare peaks from SOL2016-07-26T23:35 to 23:36UT, in both NuSTAR, SDO/AIA and IRIS. Spatially this corresponds to a small loop visible in the SDO/AIA Fe XVIII emission, which matches a similar structure lower in the solar atmosphere seen by IRIS in SJI1330{AA} and 1400AA. The NuSTAR emission in both 2.5-4 keV and 4-6 keV, is located in a small source at this loop location. The IRIS slit was over the microflaring loop, and fits show little change in Mg II but do show intensity increases, slight width enhancements and redshifts in Si IV andO IV, indicating that this microflare had most significance in and above the upper chromosphere. The NuSTAR microflare spectrum is well fitted by a thermal component of 5.8MK and $2.3times10^{44}$ cm$^{-3}$, which corresponds to a thermal energy of $10^{26}$ erg, making it considerably smaller than previously studied X-ray microflares. No non-thermal emission was detected but this could be due to the limited effective exposure time of the observation. This observation shows that even ordinary features seen in UV and EUV, can remarkably have a higher energy component that is clear in X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا