ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of edge channel transport by a low frequency irradiation

63   0   0.0 ( 0 )
 نشر من قبل Alexei Chepelianskii
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetotransport properties of high mobility two dimensional electron gas have recently attracted a significant interest due to the discovery of microwave induced zero resistance states. Here we show experimentally that microwave irradiation with a photon energy much smaller than the spacing between Landau levels can induce a strong decrease in the four terminal resistance. This effect is not predicted by the bulk transport models introduced to explain zero resistance states, but can be naturally explained by an edge transport model. This highlights the importance of edge channels for zero resistance state physics that was proposed recently.


قيم البحث

اقرأ أيضاً

Ballistic transport of hot electrons in a quantum Hall edge channel is attractive for studying electronic analog of quantum optics, where the edge potential profile is an important parameter that governs the charge velocity and scattering by longitud inal-optical (LO) phonons. Here we use a parallel double gate to control the electric field of the edge potential, and investigate the ballistic length of the channel by using hot-electron spectroscopy. The ballistic length is significantly enhanced by reducing the LO phonon scattering rate in the tailored potential.
Hot electron transport in a quantum Hall edge channel of an AlGaAs/GaAs heterostructure is studied by investigating the energy distribution function in the channel. Ballistic hot-electron transport, its optical-phonon replicas, weak electron-electron scattering, and electron-hole excitation in the Fermi sea are clearly identified in the energy spectra. The optical-phonon scattering is analyzed to evaluate the edge potential profile. We find that the electron-electron scattering is significantly suppressed with increasing the hot-electrons energy well above the Fermi energy. This can be understood with suppressed Coulomb potential with longer distance for higher energy. The results suggest that the relaxation can be suppressed further by softening the edge potential. This is essential for studying non-interacting chiral transport over a long distance.
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resist ivity $rho_c simeq 19 kOmega mu m^2$ and carrier mobility as high as 4000 cm$^2$V$^{-1}$s$^{-1}$. By using a highly doped p-Si/SiO$_2$ substrate as back gate, we analyze the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate that low energy irradiation is detrimental on the transistor current capability, resulting in an increase of the contact resistance and a reduction of the carrier mobility even at electron doses as low as 30 $e^-/nm^2$. We also show that the irradiated devices recover by returning to their pristine state after few repeated electrical measurements.
133 - N. Paradiso , S. Heun , S. Roddaro 2013
Electronic Mach-Zehnder interferometers in the Quantum Hall (QH) regime are currently discussed for the realization of quantum information schemes. A recently proposed device architecture employs interference between two co-propagating edge channels. Here we demonstrate the precise control of individual edge-channel trajectories in quantum point contact devices in the QH regime. The biased tip of an atomic force microscope is used as a moveable local gate to pilot individual edge channels. Our results are discussed in light of the implementation of multi-edge interferometers.
Impurities are unavoidable during the preparation of graphene samples and play an important role in graphenes electronic properties when they are adsorbed on graphene surface. In this work, we study the electronic structures and transport properties of a two-terminal zigzag graphene nanoribbon (ZGNR) device whose scattering region is covered by various adsorbates within the framework of the tight-binding approximation, by taking into account the coupling strength $gamma$ between adsorbates and carbon atoms, the adsorbate concentration $n_i$, and the on-site energy disorder of adsorbates. Our results indicate that when the scattering region is fully covered by homogeneous adsorbates, i.e., $n_i=1$, a transmission gap opens around the Dirac point and its width is almost proportional to $gamma^2$. In particular, two conductance plateaus of $G=2e^2/h$ appear in the vicinity of the electron energy $E=pm gamma$. When the scattering region is partially covered by homogeneous adsorbates ($0<n_i<1$), the transmission gap still survives around the Dirac point even at low $n_i$, and its width is firstly increased by $n_i$ and then declined by further increasing $n_i$; whereas the conductance decreases with $n_i$ in the regime of low $n_i$ and increases with $n_i$ in the regime of high $n_i$. While in the presence of disordered adsorbates whose on-site energies are random variables characterized by the disorder degree, the transmission gap disappears at low $n_i$ and reappears at relatively high $n_i$. Furthermore, the transmission ability of the ZGNR device can be enhanced by the adsorbate disorder when the disorder degree surpasses a critical value, contrary to the localization picture that the conduction of a nanowire becomes poorer with increasing the disorder degree. The physics underlying these transport characteristics is discussed. Our results are in good agreement with experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا