ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic study on hot-electron transport in a quantum Hall edge channel

59   0   0.0 ( 0 )
 نشر من قبل Toshimasa Fujisawa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hot electron transport in a quantum Hall edge channel of an AlGaAs/GaAs heterostructure is studied by investigating the energy distribution function in the channel. Ballistic hot-electron transport, its optical-phonon replicas, weak electron-electron scattering, and electron-hole excitation in the Fermi sea are clearly identified in the energy spectra. The optical-phonon scattering is analyzed to evaluate the edge potential profile. We find that the electron-electron scattering is significantly suppressed with increasing the hot-electrons energy well above the Fermi energy. This can be understood with suppressed Coulomb potential with longer distance for higher energy. The results suggest that the relaxation can be suppressed further by softening the edge potential. This is essential for studying non-interacting chiral transport over a long distance.


قيم البحث

اقرأ أيضاً

Ballistic transport of hot electrons in a quantum Hall edge channel is attractive for studying electronic analog of quantum optics, where the edge potential profile is an important parameter that governs the charge velocity and scattering by longitud inal-optical (LO) phonons. Here we use a parallel double gate to control the electric field of the edge potential, and investigate the ballistic length of the channel by using hot-electron spectroscopy. The ballistic length is significantly enhanced by reducing the LO phonon scattering rate in the tailored potential.
304 - K. Imura , N. Nagaosa 1996
We study the effect of backward scatterings in the tunneling at a point contact between the edges of a second level hierarchical fractional quantum Hall states. A universal scaling dimension of the tunneling conductance is obtained only when both of the edge channels propagate in the same direction. It is shown that the quasiparticle tunneling picture and the electron tunneling picture give different scaling behaviors of the conductances, which indicates the existence of a crossover between the two pictures. When the direction of two edge-channels are opposite, e.g. in the case of MacDonalds edge construction for the $ u=2/3$ state, the phase diagram is divided into two domains giving different temperature dependence of the conductance.
In this paper, we review recent developments in the emerging field of electron quantum optics, stressing analogies and differences with the usual case of photon quantum optics. Electron quantum optics aims at preparing, manipulating and measuring coh erent single electron excitations propagating in ballistic conductors such as the edge channels of a 2DEG in the integer quantum Hall regime. Because of the Fermi statistics and the presence of strong interactions, electron quantum optics exhibits new features compared to the usual case of photon quantum optics. In particular, it provides a natural playground to understand decoherence and relaxation effects in quantum transport.
We study the transport properties of a voltage-biased Josephson junction where the BCS superconducting leads are coupled via the edges of a quantum Hall sample. In this scenario, an out of equilibrium Josephson current develops, which is numerically studied within the Floquet-Keldysh Greens function formalism. We particularly focus on the time-averaged current as a function of both the bias voltage and the magnetic flux threading the sample and analyze the resonant multiple Andreev reflection processes that lead to an enhancement of the quasiparticle transmission. We find that a full tomography of the dc current in the voltage-flux plane allows for a complete spectroscopy of the one-way edge modes and could be used as a hallmark of chiral edge mediated transport in these hybrid devices.
We study electron transport through a multichannel fractional quantum Hall edge in the presence of both interchannel interaction and random tunneling between channels, with emphasis on the role of contacts. The prime example in our discussion is the edge at filling factor 2/3 with two counterpropagating channels. Having established a general framework to describe contacts to a multichannel edge as thermal reservoirs, we particularly focus on the line-junction model for the contacts and investigate incoherent charge transport for an arbitrary strength of interchannel interaction beneath the contacts and, possibly different, outside them. We show that the conductance does not explicitly depend on the interaction strength either in or outside the contact regions (implicitly, it only depends through renormalization of the tunneling rates). Rather, a long line-junction contact is characterized by a single parameter which defines the modes that are at thermal equilibrium with the contact and is determined by the interplay of various types of scattering beneath the contact. This parameter -- playing the role of an effective interaction strength within an idealized model of thermal reservoirs -- is generically nonzero and affects the conductance. We formulate a framework of fractionalization-renormalized tunneling to describe the effect of disorder on transport in the presence of interchannel interaction. Within this framework, we give a detailed discussion of charge equilibration for arbitrarily strong interaction in the bulk of the edge and arbitrary effective interaction characterizing the line-junction contacts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا