ﻻ يوجد ملخص باللغة العربية
Zero-field muon spin relaxation experiments have been carried out in the Pr(Os_{1-x}Ru_x)_4Sb_12 and Pr_{1-y}La_yOs_4Sb_12 alloy systems to investigate broken time-reversal symmetry (TRS) in the superconducting state, signaled by the onset of a spontaneous static local magnetic field B_s. In both alloy series B_s initially decreases linearly with solute concentration. Ru doping is considerably more efficient than La doping, with a ~50% faster initial decrease. The data suggest that broken TRS is suppressed for Ru concentration x >~ 0.6, but persists for essentially all La concentrations. Our data support a crystal-field excitonic Cooper pairing mechanism for TRS-breaking superconductivity.
The superconducting state of the filled skutterudite alloy series Pr$_{1-x}$La$_{x}$Pt$_{4}$Ge$_{12}$ has been systematically studied by specific heat, zero-field muon spin relaxation ($mu$SR), and superconducting critical field measurements. An addi
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i
Zero- and longitudinal-field muon spin relaxation (MuSR) experiments have been carried out in the alloy series Pr(Os1-xRux)4Sb12 and Pr1-yLayOs4Sb12 to elucidate the anomalous dynamic muon spin relaxation observed in these materials. The damping rate
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b
The collective mode spectrum of a symmetry-breaking state, such as a superconductor, provides crucial insight into the nature of the order parameter. In this context, we present a microscopic weak-coupling theory for the collective modes of a generic