ترغب بنشر مسار تعليمي؟ اضغط هنا

One-Fe versus Two-Fe Brillouin Zone of Fe-Based Superconductors: Creation of the Electron Pockets via Translational Symmetry Breaking

120   0   0.0 ( 0 )
 نشر من قبل Chia-Hui Lin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the physical effects of translational symmetry breaking in Fe-based high-temperature superconductors due to alternating anion positions. In the representative parent compounds, including the newly discovered Fe-vacancy-ordered $mathrm{K_{0.8}Fe_{1.6}Se_2}$, an unusual change of orbital character is found across the one-Fe Brillouin zone upon unfolding the first-principles band structure and Fermi surfaces, suggesting that covering a larger one-Fe Brillouin zone is necessary in experiments. Most significantly, the electron pockets (critical to the magnetism and superconductivity) are found only created with the broken symmetry, advocating strongly its full inclusion in future studies, particularly on the debated nodal structures of the superconducting order parameter.

قيم البحث

اقرأ أيضاً

We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams with the polarization operator calculated in the random-phase approximation. We find one-particle scattering rates which are highly anisotropic on each Fermi surface sheet due to the momentum dependence of the spin susceptibility and the multi-orbital composition of each Fermi pocket. This fact, combined with the anisotropy of the effective mass, produces disparity between electrons and holes in conductivity, the Hall coefficient, and the Raman initial slope, in qualitative agreement with experimental data.
93 - J. Li , D. Zhao , Y. P. Wu 2016
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. However, whether it shares a similar scenario with its cuprates counterpart is still elusive. Here, by measuring nuclear magnetic resonance in CsFe2As2, a prototypical Fe-based superconductor perceived to have evolved from a Mott insulating phase at 3d5 configuration, we report anisotropic quadruple broadening effect as a direct result of local rotational symmetry breaking. For the first time, clear connection between the Mott insulating phase and the electronic nematicity can be established and generalized to the Fe-based superconductors. This finding would promote a universal understanding on electronic nematicity and its relation with high-temperature superconductivity.
73 - N.Zaki , G.Gu , A.M.Tsvelik 2019
Topological superconductivity has been sought for in a variety of heterostructure systems, the interest being that a material displaying such a phenomenon could prove to be the ideal platform to support Majorana fermions, which in turn could be the b asis for advanced qubit technologies. Recently the high Tc family of superconductors, $FeSe_{x}Te_{1-x}$, have been shown to exhibit the property of topological superconductivity and further, evidence has been found for the presence of Majorana fermions. We have studied the interplay of topology, magnetism and superconductivity in the $FeSe_{x}Te_{1-x}$ family using high-resolution laser-based photoemission. At the bulk superconducting transition, a gap opens at the chemical potential as expected. However, a second gap is observed to open at the Dirac point in the topological surface state. The associated mass acquisition in the topological state points to time-reversal symmetry breaking, probably associated with the formation of ferromagnetism in the surface layer. The presence of intrinsic ferromagnetism combined with strong spin-orbit coupling provides an ideal platform for a range of exotic topological phenomena.
352 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall y flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
188 - S. Kong , D. Y. Liu , S. T. Cui 2014
The multiband nature of iron-pnictide superconductors is one of the keys to the understanding of their intriguing behavior. The electronic and magnetic properties heavily rely on the multiband interactions between different electron and hole pockets near the Fermi level. At the fundamental level, though many theoretical models were constructed on the basis of the so-called 1-Fe Brillouin zone (BZ) with an emphasis of the basic square lattice of iron atoms, most electronic structure measurements were interpreted in the 2-Fe BZ. Whether the 1-Fe BZ is valid in a real system is still an open question. Using angle-resolved photoemission spectroscopy (ARPES), here we show in an extremely hole-doped iron-pnictide superconductor CsFe$_2$As$_2$ that the distribution of electronic spectral weight follows the 1-Fe BZ, and that the emerging band structure bears some features qualitatively different from theoretical band structures of the 1-Fe BZ. Our analysis suggests that the interlayer separation is an important tuning factor for the physics of FeAs layers, the increase of which can reduce the coupling between Fe and As and lead to the emergence of the electronic structure in accord with the 1-Fe symmetry of the Fe square lattice. Our finding puts strong constraints on the theoretical models constructed on the basis of the 1-Fe BZ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا