ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

268   0   0.0 ( 0 )
 نشر من قبل Zheng Li
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.



قيم البحث

اقرأ أيضاً

398 - K. Matano , G.L. Sun , D.L. Sun 2009
We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to unde rdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO$_{1-x}$F$_{x}$. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity.
107 - T. T. Han , L. Chen , C. Cai 2020
When passing through a phase transition, electronic system saves energy by opening energy gaps at the Fermi level. Delineating the energy gap anisotropy provides insights into the origin of the interactions that drive the phase transition. Here, we r eport the angle-resolved photoemission spectroscopy (ARPES) study on the detailed gap anisotropies in both the tetragonal magnetic and superconducting phases in Sr$_{1-x}$Na$_x$Fe$_2$As$_2$. First, we found that the spin-density-wave (SDW) gap is strongly anisotropic in the tetragonal magnetic phase. The gap magnitude correlates with the orbital character of Fermi surface closely. Second, we found that the SDW gap anisotropy is isostructural to the superconducting gap anisotropy regarding to the angular dependence, gap minima locations, and relative gap magnitudes. Our results indicate that the superconducting pairing interaction and magnetic interaction share the same origin. The intra-orbital scattering plays an important role in constructing these interactions resulting in the orbital-selective magnetism and superconductivity in iron-based superconductors.
Using a local real-space microscopy probe, we discover evidence of nanoscale interlayer defects along the c-crystallographic direction in BaFe2As2 (122) based iron-arsenide superconductors. We find ordered 122 atomic arrangements within the ab-plane, and within regions of ~10 to 20 nm size perpendicular to this plane. While the FeAs substructure is very rigid, Ba ions are relatively weakly bound and can be displaced from the 122, forming stacking faults resulting in the physical separation of the 122 between adjacent ordered domains. The evidence for interlayer defects between the FeAs superconducting planes gives perspective on the minimal connection between interlayer chemical disorder and high-temperature superconductivity. In particular, the Cooper pairs may be finding a way around such localized interlayer defects through a percolative path of the ordered layered 122 lattice that may not affect Tc.
We report on the specific heat determination of the anisotropic phase diagram of single crystals of optimally doped SmFeAsO1-xFx. In zero-field, the optimally doped compound displays a clear cusp-like anomaly in C/T with {Delta}C/Tc = 24 mJ/molK2 at Tc = 49.5 K. In magnetic fields applied along the c-axis, we find pronounced superconducting fluctuations induced broadening and suppression of the specific heat anomaly which can be described using three-dimensional lowest-Landau-level scaling with an upper critical field slope of -3.5 T/K and an anisotropy of {Gamma} = 8. The small value of {Delta}C/Tc yields a Sommerfeld coefficient {gamma} ~ 8 mJ/molK2 indicating that SmFeAsO1-xFx is characterized by a modest density of states and strong coupling.
Using two experimental techniques, we studied single crystals of the 122-FeAs family with almost the same critical temperature, Tc. We investigated the temperature dependence of the lower critical field of a single crystal under static magnetic field s parallel to the axis. The temperature dependence of the London penetration depth can be described equally well either by a single anisotropic -wave-like gap or by a two-gap model, while a d-wave approach cannot be used to fit the London penetration depth data. Intrinsic multiple Andreev reflection effect spectroscopy was used to detect bulk gap values in single crystals of the intimate compound, with the same Tc. We estimated the range of the large gap value 6-8 meV (depending on small variation of and its a space anisotropy of about 30%, and the small gap 1.7 meV. This clearly indicates that the gap structure of our investigated systems more likely corresponds to a nodeless s-wave two gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا