ﻻ يوجد ملخص باللغة العربية
Using two experimental techniques, we studied single crystals of the 122-FeAs family with almost the same critical temperature, Tc. We investigated the temperature dependence of the lower critical field of a single crystal under static magnetic fields parallel to the axis. The temperature dependence of the London penetration depth can be described equally well either by a single anisotropic -wave-like gap or by a two-gap model, while a d-wave approach cannot be used to fit the London penetration depth data. Intrinsic multiple Andreev reflection effect spectroscopy was used to detect bulk gap values in single crystals of the intimate compound, with the same Tc. We estimated the range of the large gap value 6-8 meV (depending on small variation of and its a space anisotropy of about 30%, and the small gap 1.7 meV. This clearly indicates that the gap structure of our investigated systems more likely corresponds to a nodeless s-wave two gaps.
We present direct measurements of the superconducting order parameter in nearly optimal FeSe$_{0.5}$Te$_{0.5}$ single crystals with critical temperature $T_C approx 14$ K. Using intrinsic multiple Andreev reflection effect (IMARE) spectroscopy and me
The magnetic properties of LiFeAs, as single crystalline and polycrystalline samples, were investigated. The lower critical field deduced from the vortex penetration of two single crystals appears to be almost isotropic with a temperature dependence
Detailed temperature dependence of both superconducting gaps was obtained directly by means of SnS-Andreev spectroscopy. The Delta sigma,pi(T) -curves were shown to be deviated from standard BCS-like behavior, due to k-space proximity effect between
The superconducting gap in FeAs-based superconductor SmFeAs(O1-xFx) (x = 0.15 and 0.30) and the temperature dependence of the sample with x = 0.15 have been measured by Andreev reflection spectroscopy. The intrinsic superconducting gap is independent
We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0.