ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiation of Planetesimals and the Thermal Consequences of Melt Migration

79   0   0.0 ( 0 )
 نشر من قبل Nicholas Moskovitz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the heating of a primordial planetesimal by decay of the short-lived radionuclides Al-26 and Fe-60 to determine (i) the timescale on which melting will occur; (ii) the minimum size of a body that will produce silicate melt and differentiate; (iii) the migration rate of molten material within the interior; and (iv) the thermal consequences of the transport of Al-26 in partial melt. Our models incorporate results from previous studies of planetary differentiation and are constrained by petrologic (i.e. grain size distributions), isotopic (e.g. Pb-Pb and Hf-W ages) and mineralogical properties of differentiated achondrites. We show that formation of a basaltic crust via melt percolation was limited by the formation time of the body, matrix grain size and viscosity of the melt. We show that low viscosity (< 1 Pa-s) silicate melt can buoyantly migrate on a timescale comparable to the mean life of Al-26. The equilibrium partitioning of Al into silicate partial melt and the migration of that melt acts to dampen internal temperatures. However, subsequent heating from the decay of Fe-60 generated melt fractions in excess of 50%, thus completing differentiation for bodies that accreted within 2 Myr of CAI formation (i.e. the onset of isotopic decay). Migration and concentration of Al-26 into a crust results in remelting of that crust for accretion times less than 2 Myr and for bodies >100 km in size. Differentiation would be most likely for planetesimals larger than 20 km in diameter that accreted within ~2.7 Myr of CAI formation.

قيم البحث

اقرأ أيضاً

Impacts between planetesimals have largely been ruled out as a heat source in the early Solar System, by calculations that show them to be an inefficient heat source and unlikely to cause global heating. However, the long-term, localized thermal effe cts of impacts on planetesimals have never been fully quantified. Here, we simulate a range of impact scenarios between planetesimals to determine the post-impact thermal histories of the parent bodies, and hence the importance of impact heating in the thermal evolution of planetesimals. We find on a local scale that heating material to petrologic type 6 is achievable for a range of impact velocities and initial porosities, and impact melting is possible in porous material at a velocity of > 4 km/s. Burial of heated impactor material beneath the impact crater is common, insulating that material and allowing the parent body to retain the heat for extended periods (~ millions of years). Cooling rates at 773 K are typically 1 - 1000 K/Ma, matching a wide range of measurements of metallographic cooling rates from chondritic materials. While the heating presented here is localized to the impact site, multiple impacts over the lifetime of a parent body are likely to have occurred. Moreover, as most meteorite samples are on the centimeter to meter scale, the localized effects of impact heating cannot be ignored.
As planets grow the exchange of angular momentum with the gaseous component of the protoplanetary disc produces a net torque resulting in a variation of the semi-major axis of the planet. For low-mass planets not able to open a gap in the gaseous dis c this regime is known as type I migration. Pioneer works studied this mechanism in isothermal discs finding fast inward type I migration rates that were unable to reproduce the observed properties of extrasolar planets. In the last years, several improvements have been made in order to extend the study of type I migration rates to non-isothermal discs. Moreover, it was recently shown that if the planets luminosity due to solid accretion is taken into account, inward migration could be slowed down and even reversed. In this work, we study the planet formation process incorporating, and comparing, updated type I migration rates for non-isothermal discs and the role of planets luminosity over such rates. We find that the latter can have important effects on planetary evolution, producing a significant outward migration for the growing planets.
A key process in planet formation is the exchange of angular momentum between a growing planet and the protoplanetary disc, which makes the planet migrate through the disc. Several works show that in general low-mass and intermediate-mass planets mig rate towards the central star, unless corotation torques become dominant. Recently, a new kind of torque, called the thermal torque, was proposed as a new source that can generate outward migration of low-mass planets. While the Lindblad and corotation torques depend mostly on the properties of the protoplanetary disc and on the planet mass, the thermal torque depends also on the luminosity of the planet, arising mainly from the accretion of solids. Thus, the accretion of solids plays an important role not only in the formation of the planet but also in its migration process. In a previous work, we evaluated the thermal torque effects on planetary growth and migration mainly in the planetesimal accretion paradigm. In this new work, we study the role of the thermal torque within the pebble accretion paradigm. Computations are carried out consistently in the framework of a global model of planet formation that includes disc evolution, dust growth and evolution, and pebble formation. We also incorporate updated prescriptions of the thermal torque derived from high resolution hydrodynamical simulations. Our simulations show that the thermal torque generates extended regions of outward migration in low viscosity discs. This has a significant impact in the formation of the planets.
We present preliminary results of terrestrial planet formation using on the one hand classical numerical integration of hundreds of small bodies on CPUs and on the other hand -- for comparison reasons -- the results of our GPU code with thousands of small bodies which then merge to larger ones. To be able to determine the outcome of collision events we use our smooth particle hydrodynamics (SPH) code which tracks how water is lost during such events.
57 - M. Jura 2013
Evidence is now compelling that most externally-polluted white dwarfs derive their heavy atoms by accretion from asteroids - the building blocks of rocky planets. Optical and ultraviolet spectroscopy of a small sample of suitable white dwarf stars sh ows that to zeroth order, the accreted extrasolar parent bodies compositionally resemble bulk Earth. (1) Extrasolar planetesimals are at least 85% by mass composed of O, Mg, Si and Fe. (2) Compared to the Sun, C is often deficient, usually by at least a factor of 10 and therefore comprises less than 1% of an extrasolar planetesimals mass. At least to-date, C has never been found to be enhanced as would be expected if carbon-rich planetesimals have formed. (3) While there may be individual exceptions, considered as a whole, the population of extrasolar asteroids accreted onto a well-defined sample of local white dwarf stars is less than 1% water by mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا