ﻻ يوجد ملخص باللغة العربية
Turbulence in space and astrophysical plasmas is governed by the nonlinear interactions between counterpropagating Alfven waves. Here we present the theoretical considerations behind the design of the first laboratory measurement of an Alfven wave collision, the fundamental interaction underlying Alfvenic turbulence. By interacting a relatively large-amplitude, low-frequency Alfven wave with a counterpropagating, smaller-amplitude, higher-frequency Alfven wave, the experiment accomplishes the secular nonlinear transfer of energy to a propagating daughter Alfven wave. The predicted properties of the nonlinearly generated daughter Alfven wave are outlined, providing a suite of tests that can be used to confirm the successful measurement of the nonlinear interaction between counterpropagating Alfven waves in the laboratory.
Plasma experiments in laboratory settings offer unique opportunities to address fundamental aspects of the solar dynamo and magnetism in the solar atmosphere. We argue here that ground-based laboratory experiments have direct connections to NASA base
The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts, the brightest astrophysical radio
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kineti
We present experimental results on the formation of supersonic, radiatively cooled jets driven by pressure due to the toroidal magnetic field generated by the 1.5 MA, 250 ns current from the MAGPIE generator. The morphology of the jet produced in the
In the previous works harmonic, phase-mixed, Alfven wave dynamics was considered both in the kinetic and magnetohydrodynamic regimes. Up today only magnetohydrodynamic, phase-mixed, Gaussian Alfven pulses were investigated. In the present work we ext