ﻻ يوجد ملخص باللغة العربية
It is known that the so-called problem of solar power pacemaker related to possible existence of some hidden but key mechanism of energy influence of the Sun on fundamental geophysical processes is one of the principal and puzzling problems of modern climatology. The tracks of this mechanism have been shown up in different problems of solar-terrestrial physics for a long time and, in particular, in climatology, where the solar-climate variability is stably observed. However, the mechanisms by which small changes in the Suns energy (solar irradiance or insolation) output during the solar cycle can cause change in the weather and climate are still unknown. We analyze possible causes of the solar-climate variability concentrating ones attention on the physical substantiation of strong correlation between the temporal variations of magnetic flux of the solar tachocline zone and the Earth magnetic field (Y-component). We propose an effective mechanism of solar dynamo-geodynamo connection which plays the role of the solar power pacemaker of the Earth global climate.
Composition of terrestrial planets records planetary accretion, core-mantle and crust-mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. E
The carbon-silicate cycle regulates the atmospheric $CO_2$ content of terrestrial planets on geological timescales through a balance between the rates of $CO_2$ volcanic outgassing and planetary intake from rock weathering. It is thought to act as an
The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The proper
Before about 500 million years ago, most probably our planet experienced temporary snowball conditions, with continental and sea ices covering a large fraction of its surface. This points to a potential bistability of Earths climate, that can have at
Micrometeoroids (cosmic dust with size between a few $mu$m and $sim$1 mm) dominate the annual extraterrestrial mass flux to the Earth. We investigate the range of physical processes occurring when micrometeoroids traverse the atmosphere. We compute t