ترغب بنشر مسار تعليمي؟ اضغط هنا

Climate Stability of Habitable Earth-like Planets

212   0   0.0 ( 0 )
 نشر من قبل Kristen Menou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kristen Menou




اسأل ChatGPT حول البحث

The carbon-silicate cycle regulates the atmospheric $CO_2$ content of terrestrial planets on geological timescales through a balance between the rates of $CO_2$ volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric $CO_2$ content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.



قيم البحث

اقرأ أيضاً

As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planets surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the effciency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.
Before about 500 million years ago, most probably our planet experienced temporary snowball conditions, with continental and sea ices covering a large fraction of its surface. This points to a potential bistability of Earths climate, that can have at least two different (statistical) equilibrium states for the same external forcing (i.e., solar radiation). Here we explore the probability of finding bistable climates in earth-like exoplanets, and consider the properties of planetary climates obtained by varying the semi-major orbital axis (thus, received stellar radiation), eccentricity and obliquity, and atmospheric pressure. To this goal, we use the Earth-like planet surface temperature model (ESTM), an extension of 1D Energy Balance Models developed to provide a numerically efficient climate estimator for parameter sensitivity studies and long climatic simulations. After verifying that the ESTM is able to reproduce Earth climate bistability, we identify the range of parameter space where climate bistability is detected. An intriguing result of the present work is that the planetary conditions that support climate bistability are remarkably similar to those required for the sustainance of complex, multicellular life on the planetary surface. The interpretation of this result deserves further investigation, given its relevance for the potential distribution of life in exoplanetary systems.
The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The proper ties of the planetary atmosphere and its interaction with the radiative energy provided by the planets host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results obtained have been compared to those of a 1D radiative convective climate model. The different stellar spectral energy distributions lead to different surface temperatures and due to ozone heating to very different vertical temperature structures. As previous 1D studies we find higher surface temperatures for the Earth-like planet around the K-type star, and lower temperatures for the planet around the F-type star compared to an Earth-like planet around the Sun. However, this effect is more pronounced in the 3D model results than in the 1D model because the 3D model accounts for feedback processes such as the ice-albedo and the water vapor feedback. Whether the 1D model may approximate the global mean of the 3D model results strongly depends on the choice of the relative humidity profile in the 1D model, which is used to determine the water vapor profile.
120 - Bradford J. Foley 2019
Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO$_2$ budgets ranging from $approx 3$ orders of magnitude lower than Earths to $approx 1$ order of magnitude larger, and radiogenic heating budgets as large or larger than Earths, allow for habitable climates lasting 1-5 Gyrs. The ability of stagnant lid planets to recover from potential snowball states is also explored; recovery is found to depend on whether atmosphere-ocean chemical exchange is possible. For a hard snowball with no exchange, recovery is unlikely, as most CO$_2$ outgassing takes place via metamorphic decarbonation of the crust, which occurs below the ice layer. However, for a soft snowball where there is exchange between atmosphere and ocean, planets can readily recover. For both hard and soft snowball states, there is a minimum CO$_2$ budget needed for recovery; below this limit any snowball state would be permanent. Thus there is the possibility for hysteresis in stagnant lid planet climate evolution, where planets with low CO$_2$ budgets that start off in a snowball climate will be permanently stuck in this state, while otherwise identical planets that start with a temperate climate will be capable of maintaining this climate for 1 Gyrs or more. Finally, the model results have important implications for future exoplanet missions, as they can guide observations to planets most likely to possess habitable climates.
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, an d cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا