ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared 3-4 Micron Spectroscopy of Nearby PG QSOs and AGN-Nuclear Starburst Connections in High-luminosity AGN Populations

156   0   0.0 ( 0 )
 نشر من قبل Masatoshi Imanishi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of infrared L-band (3-4 micron) slit spectroscopy of 30 PG QSOs at z < 0.17, the representative sample of local high-luminosity, optically selected AGNs. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature is used to probe nuclear (< a few kpc) starburst activity and to investigate the connections between AGNs and nuclear starbursts in PG QSOs. The 3.3 micron PAH emission is detected in the individual spectra of 5/30 of the observed PG QSOs. We construct a composite spectrum of PAH-undetected PG QSOs and discern the presence of the 3.3 micron PAH emission therein. We estimate the nuclear-starburst and AGN luminosities from the observed 3.3 micron PAH emission and 3.35 micron continuum luminosities, respectively, and find that the nuclear-starburst-to-AGN luminosity ratios in PG QSOs are similar to those of previously studied AGN populations with lower luminosities, suggesting that AGN-nuclear starburst connections are valid over the wide luminosity range of AGNs in the local universe. The observed nuclear-starburst-to-AGN luminosity ratios in PG QSOs with available supermassive black hole masses are comparable to a theoretical prediction based on the assumption that the growth of a supermassive black hole is controlled by starburst-induced turbulence.



قيم البحث

اقرأ أيضاً

120 - D. Asmus , S. F. Honig , P. Gandhi 2011
We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGNs lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 micron emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 micron emission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR--X-ray correlation found previously for AGN is extended to a range from 10^40 to 10^45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR--X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.
127 - D. Asmus , P. Gandhi , A. Smette 2011
High spatial resolution mid-infrared (MIR) 12 mum continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained by VLT/VISIR is presented. The goal of this investigation is to determine if the nuclear MIR emission of LLAGN is consistent with the existence of a dusty obscuring torus. A sample of 17 nearby LLAGN was selected and combined with archival VISIR data of 9 additional LLAGN with available X-ray measurements. Of the 17 observed LLAGN, 7 are detected, while upper limits are derived for the 10 non-detections. All detections except NGC 3125 appear point-like on a spatial scale of sim 0.35. The detections do not significantly deviate from the known MIR-X-ray correlation but extend it by a factor of sim 10 down to luminosities < 10^41 erg/s with a narrow scatter. The latter is dominated by the uncertainties in the X-ray luminosity. Interestingly, a similar correlation with comparable slope but with a normalization differing by sim 2.6 orders of magnitude has been found for local starburst galaxies. In addition, the VISIR data are compared with lower spatial resolution data from Spitzer/IRS and IRAS. By using a scaled starburst template SED and the PAH 11.3 mum emission line the maximum nuclear star formation contamination to the VISIR photometry is restricted to < 30% for 75% of the LLAGN. Exceptions are NGC 1097 and NGC 1566, which may possess unresolved strong PAH emission. Furthermore, within the uncertainties the MIR-X-ray luminosity ratio is unchanged over more than 4 orders of magnitude in accretion rate. These results are consistent with the existence of the dusty torus in all observed LLAGN, although the jet or accretion disk as origin of the MIR emission cannot be excluded. Finally, the fact that the MIR-X-ray correlation holds for all LLAGN and Seyferts makes it a very useful empirical tool for converting between the MIR and X-ray powers of these nuclei.
We used the 1.4 GHz NVSS to study radio sources in two color-selected QSO samples: a volume-limited sample of 1313 QSOs defined by M_i < -23 in the redshift range 0.2 < z < 0.45 and a magnitude-limited sample of 2471 QSOs with m_r < 18.5 and 1.8 < z < 2.5. About 10% were detected above the 2.4 mJy NVSS catalog limit and are powered primarily by AGNs. The space density of the low-redshift QSOs evolves as rho proportional to (1+z)^6. In both redshift ranges the flux-density distributions and luminosity functions of QSOs stronger than 2.4 mJy are power laws, with no features to suggest more than one kind of radio source. Extrapolating the power laws to lower luminosities predicts the remaining QSOs should be extremely radio quiet, but they are not. Most were detected statistically on the NVSS images with median peak flux densities S_p(mJy/beam) ~ 0.3 and 0.05 in the low- and high-redshift samples, corresponding to 1.4 GHz spectral luminosities log[L(W/Hz)] ~ 22.7$ and 24.1, respectively. We suggest that the faint radio sources are powered by star formation at rates ~20 M_sun per year in the moderate luminosity (median M_i ~ -23.4) low-redshift QSOs and ~500 M_sun per year in the very luminous (M_i} ~ -27.5) high-redshift QSOs. Such luminous starbursts [ log(L / L_sun) ~ 11.2 and 12.6, respectively] are consistent with quasar mode accretion in which cold gas flows fuel both AGN and starburst.
147 - T.V. Ricci 2010
NGC 7582 is defined as a Starburst/AGN galaxy, since its optical and X-Ray spectra reveal both characteristics. In this work, we show the results of a stellar population modeling in a datacube taken with the Gemini South telescope. We found that $sim $ 90% of the light in the field of view is emitted by stars that are less than 1 billion years old. A strong burst occurred about $sim$ 6 million years ago and has nearly solar metallicity. We also found a Wolf-Rayet cluster.
Despite decades of study, it remains unclear whether there are distinct radio-loud and radio-quiet populations of quasi-stellar objects (QSOs). Early studies were limited by inhomogeneous QSO samples, inadequate sensitivity to probe the radio-quiet p opulation, and degeneracy between redshift and luminosity for flux-density-limited samples. Our new 6 GHz EVLA observations allow us for the first time to obtain nearly complete (97%) radio detections in a volume-limited color-selected sample of 179 QSOs more luminous than M_i = -23 from the Sloan Digital Sky Survey (SDSS) Data Release Seven in the narrow redshift range 0.2 < z < 0.3. The dramatic improvement in radio continuum sensitivity made possible with the new EVLA allows us, in 35 minutes of integration, to detect sources as faint as 20 microJy, or log[L_6 (W/Hz)] ~ 21.5 at z = 0.25, well below the radio luminosity, log[L_6 (W/Hz)] ~ 22.5, that separates star-forming galaxies from radio-loud active galactic nuclei (AGNs) driven by accretion onto a super-massive black hole. We calculate the radio luminosity function (RLF) for these QSOs using three constraints: (a) EVLA 6 GHz observations for log[L_6 (W/Hz)] < 23.5, (b) NRAO-VLA Sky Survey (NVSS) observations for log[L_6 (W/Hz)] > 23.5, and (c) the total number of SDSS QSOs in our volume-limited sample. We show that the RLF can be explained as a superposition of two populations, dominated by AGNs at the bright end and star formation in the QSO host galaxies at the faint end.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا