ترغب بنشر مسار تعليمي؟ اضغط هنا

AGN and Starburst Radio Emission from Optically Selected QSOs

118   0   0.0 ( 0 )
 نشر من قبل J. J. Condon
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We used the 1.4 GHz NVSS to study radio sources in two color-selected QSO samples: a volume-limited sample of 1313 QSOs defined by M_i < -23 in the redshift range 0.2 < z < 0.45 and a magnitude-limited sample of 2471 QSOs with m_r < 18.5 and 1.8 < z < 2.5. About 10% were detected above the 2.4 mJy NVSS catalog limit and are powered primarily by AGNs. The space density of the low-redshift QSOs evolves as rho proportional to (1+z)^6. In both redshift ranges the flux-density distributions and luminosity functions of QSOs stronger than 2.4 mJy are power laws, with no features to suggest more than one kind of radio source. Extrapolating the power laws to lower luminosities predicts the remaining QSOs should be extremely radio quiet, but they are not. Most were detected statistically on the NVSS images with median peak flux densities S_p(mJy/beam) ~ 0.3 and 0.05 in the low- and high-redshift samples, corresponding to 1.4 GHz spectral luminosities log[L(W/Hz)] ~ 22.7$ and 24.1, respectively. We suggest that the faint radio sources are powered by star formation at rates ~20 M_sun per year in the moderate luminosity (median M_i ~ -23.4) low-redshift QSOs and ~500 M_sun per year in the very luminous (M_i} ~ -27.5) high-redshift QSOs. Such luminous starbursts [ log(L / L_sun) ~ 11.2 and 12.6, respectively] are consistent with quasar mode accretion in which cold gas flows fuel both AGN and starburst.



قيم البحث

اقرأ أيضاً

158 - N. Seymour 2010
We examine the rest-frame far-infrared emission from powerful radio sources with 1.4GHz luminosity densities of 25<=log(L_1.4/WHz^-1)<=26.5 in the extragalactic Spitzer First Look Survey field. We combine Herschel/SPIRE flux densities with Spitzer/IR AC and MIPS infrared data to obtain total (8-1000um) infrared luminosities for these radio sources. We separate our sources into a moderate, 0.4<z<0.9, and a high, 1.2<z<3.0, redshift sub-sample and we use Spitzer observations of a z<0.1 3CRR sample as a local comparison. By comparison to numbers from the SKA Simulated Skies we find that our moderate redshift sample is complete and our high redshift sample is 14per cent complete. We constrain the ranges of mean star formation rates (SFRs) to be 3.4-4.2, 18-41 and 80-581Msun/yr for the local, moderate and high redshift samples respectively. Hence, we observe an increase in the mean SFR with increasing redshift which we can parameterise as ~(1+z)^Q, where Q=4.2+/-0.8. However we observe no trends of mean SFR with radio luminosity within the moderate or high redshift bins. We estimate that radio-loud AGN in the high redshift sample contribute 0.1-0.5per cent to the total SFR density at that epoch. Hence, if all luminous starbursts host radio-loud AGN we infer a radio-loud phase duty cycle of 0.001-0.005.
We investigate radio-mode AGN activity among post-starburst galaxies from the Sloan Digital Sky Survey to determine whether AGN feedback may be responsible for the cessation of star formation. Based on radio morphology and radio-loudness from the FIR ST and NVSS data, we separate objects with radio activity due to an AGN from ongoing residual star formation. Of 513 SDSS galaxies with strong A-star spectra, 12 objects have 21-cm flux density above 1 mJy. These galaxies do not show optical AGN emission lines. Considering that the lifetime of radio emission is much shorter than the typical time-scale of the spectroscopic features of post-starburst galaxies, we conclude that the radio-emitting AGN activity in these objects was triggered after the end of the recent starburst, and thus cannot be an important feedback process to explain the post-starburst phase. The radio luminosities show a positive correlation with total galaxy stellar mass, but not with the mass of recently formed stars. Thus the mechanical power of AGN feedback derived from the radio luminosity is related to old stellar populations dominating the stellar mass, which in turn are related to the masses of central supermassive black holes.
We present a catalog of 213 type-2 AGN selected from the zCOSMOS survey. The selected sample covers a wide redshift range (0.15<z<0.92) and is deeper than any other previous study, encompassing the luminosity range 10^{5.5} < Lsun< L[OIII] < 10^{9.1} Lsun. We explore the intrinsic properties of these AGN and the relation to their X-ray emission (derived from the XMM-COSMOS observations). We study their evolution by computing the [OIII]5007A line luminosity function (LF) and we constrain the fraction of obscured AGN as a function of luminosity and redshift. The sample was selected on the basis of the optical emission line ratios, after applying a cut to the signal-to-noise ratio (S/N) of the relevant lines. We used the standard diagnostic diagrams [OIII]/Hbeta versus [NII]/Halpha and ([OIII]/Hbeta versus [SII]/Halpha) to isolate AGN in the redshift range 0.15<z<0.45 and the diagnostic diagram [OIII]/Hbeta versus [OII]/Hbeta to extend the selection to higher redshift (0.5<z<0.92). Combining our sample with one drawn from SDSS, we found that the best description of the evolution of type-2 AGN is a luminosity-dependent density evolution model. Moreover, using the type-1 AGN LF we were able to constrain the fraction of type-2 AGN to the total (type-1 + type-2) AGN population. We found that the type-2 fraction decreases with luminosity, in agreement with the most recent results, and shows signs of a slight increase with redshift. However, the trend with luminosity is visible only after combining the SDSS+zCOSMOS samples. From the COSMOS data points alone, the type-2 fraction seems to be quite constant with luminosity.
We present the results of infrared L-band (3-4 micron) slit spectroscopy of 30 PG QSOs at z < 0.17, the representative sample of local high-luminosity, optically selected AGNs. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature is used to probe nuclear (< a few kpc) starburst activity and to investigate the connections between AGNs and nuclear starbursts in PG QSOs. The 3.3 micron PAH emission is detected in the individual spectra of 5/30 of the observed PG QSOs. We construct a composite spectrum of PAH-undetected PG QSOs and discern the presence of the 3.3 micron PAH emission therein. We estimate the nuclear-starburst and AGN luminosities from the observed 3.3 micron PAH emission and 3.35 micron continuum luminosities, respectively, and find that the nuclear-starburst-to-AGN luminosity ratios in PG QSOs are similar to those of previously studied AGN populations with lower luminosities, suggesting that AGN-nuclear starburst connections are valid over the wide luminosity range of AGNs in the local universe. The observed nuclear-starburst-to-AGN luminosity ratios in PG QSOs with available supermassive black hole masses are comparable to a theoretical prediction based on the assumption that the growth of a supermassive black hole is controlled by starburst-induced turbulence.
We present the first AGN census in a sample of 61 galaxies selected at 70microns, a wavelength which should strongly favour the detection of star-forming systems. For the purpose of this study we take advantage of deep Chandra X-ray and Spitzer inf rared (3.6-160micron) data, as well as optical spectroscopy and photometry from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey for the Extended Groth Strip (EGS) field. We investigate spectral line diagnostics ([OIII]/Hbeta and [NeIII]/[OII] ratios, Hdelta Balmer absorption line equivalent widths and the strength of the 4000Ang break), X-ray luminosities and spectral energy distributions (SEDs). We find that the 70micron sources are undergoing starburst episodes and are therefore characterised by a predominance of young stars. In addition, 13 per cent of the sources show AGN signatures and hence potentially host an AGN. When the sample is split into starbursts (SBs, 10^10<L_IR<10^11 L_solar), Luminous InfraRed Galaxies (LIRGs, 10^11<L_IR<10^12 L_solar) and UltraLuminous InfraRed Galaxies (ULIRGs,10^12<L_IR<10^13 L_solar), the AGN fraction becomes 0, 11 and 23 per cent respectively, showing an increase with total infrared luminosity. However, by examining the sources panchromatic SEDs, we conclude that although the AGN is energetically important in 1 out of 61 objects, all 70micron-selected galaxies are primarily powered by star-formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا