ﻻ يوجد ملخص باللغة العربية
We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGNs lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 micron emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 micron emission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR--X-ray correlation found previously for AGN is extended to a range from 10^40 to 10^45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR--X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.
High spatial resolution mid-infrared (MIR) 12 mum continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained by VLT/VISIR is presented. The goal of this investigation is to determine if the nuclear MIR emission of LLAGN is consistent
We present high spatial resolution MIR observations for several nearby radio loud active galactic nuclei (RLAGN), which were obtained using the Gemini North and South telescopes. Of the six observed objects, we detected five in the Si-2 (8.7 microns)
We present the results of infrared L-band (3-4 micron) slit spectroscopy of 30 PG QSOs at z < 0.17, the representative sample of local high-luminosity, optically selected AGNs. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature is
Interferometric measurements in the mid-infrared have shown that the sizes of the warm dust distributions in active galactic nuclei are consistent with their scaling with the square root of their luminosity. We carry out a more detailed analysis of t
We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs) and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGN; Lbol lesssim 10^42 erg/sec). Infrared (IR) observations may advance