ﻻ يوجد ملخص باللغة العربية
Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, if unattended, an important impact on the interpretation of these measurements within the Standard Model (SM), and thus on constraints on new physics. Current theory uncertainties, which would dominate the total uncertainty, need to be strongly reduced through future advances in the calculation of multi-loop radiative corrections together with improved experimental and theoretical control of the precision of SM input parameters. This document aims to provide an estimate of the required improvement in calculational accuracy in view of the anticipated high precision at the FCC-ee. For the most relevant electroweak and Higgs-boson precision observables we evaluate the corresponding quantitative impact.
The prospects for electroweak precision measurements at the Future Circular Collider with electron-positron beams (FCC-ee) are discussed. The Z mass and width, as well as the value of the electroweak mixing angle, can be measured with very high preci
High precision experimental measurements of the properties of the Higgs boson at $sim$ 125 GeV as well as electroweak precision observables such as the W -boson mass or the effective weak leptonic mixing angle are expected at future $e^+e^-$ collider
This document provides a writeup of all contributions to the workshop on High precision measurements of $alpha_s$: From LHC to FCC-ee held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the
We develop a technique to present Higgs coupling measurements, which decouple the poorly defined theoretical uncertainties associated to inclusive and exclusive cross section predictions. The technique simplifies the combination of multiple measureme
The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of mag