ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical uncertainties in the MSSM Higgs boson mass calculation

115   0   0.0 ( 0 )
 نشر من قبل Henning Bahl
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The remaining theoretical uncertainties from unknown higher-order corrections in the prediction for the light Higgs-boson mass of the MSSM are estimated. The uncertainties associated with three different approaches that are implemented in the publicly available code FeynHiggs are compared: the fixed-order diagrammatic approach, suitable for low SUSY scales, the effective field theory (EFT) approach, suitable for high SUSY scales, and the hybrid approach which combines the fixed-order and the EFT approaches. It is demonstrated for a simple single-scale scenario that the result based on the hybrid approach yields a precise prediction for low, intermediate and high SUSY scales with a theoretical uncertainty of up to $sim 1.5$ GeV for large stop mixing and $sim 0.5$ GeV for small stop mixing. The uncertainty estimate of the hybrid calculation approaches the uncertainty estimate of the fixed-order result for low SUSY scales and the uncertainty estimate of the EFT approach for high SUSY scales, while for intermediate scales it is reduced compared to both of the individual results. The estimate of the theoretical uncertainty is also investigated in scenarios with more than one mass scale. A significantly enhanced uncertainty is found in scenarios where the gluino is substantially heavier than the scalar top quarks. The uncertainty estimate presented in this paper will be part of the public code FeynHiggs.



قيم البحث

اقرأ أيضاً

We develop a technique to present Higgs coupling measurements, which decouple the poorly defined theoretical uncertainties associated to inclusive and exclusive cross section predictions. The technique simplifies the combination of multiple measureme nts and can be used in a more general setting. We illustrate the approach with toy LHC Higgs coupling measurements and a collection of new physics models.
319 - K.E. Williams , G. Weiglein 2008
The analysis of the Higgs search results at LEP showed that a part of the MSSM parameter space with non-zero complex phases could not be excluded, where the lightest neutral Higgs boson, h_1, has a mass of only about 45 GeV and the second lightest ne utral Higgs boson, h_2, has a sizable branching fraction into a pair of h_1 states. Full one-loop results for the Higgs cascade decay h_2 --> h_1 h_1 are presented and combined with two-loop Higgs propagator corrections taken from the program FeynHiggs. Using the improved theoretical prediction to analyse the limits on topological cross sections obtained at LEP, the existence of an unexcluded region at low Higgs mass is confirmed. The effect of the genuine vertex corrections on the size and shape of this region is discussed.
Recently, the Higgs boson masses in the Minimal Supersymmetric Standard Model (MSSM) and their mixing have been calculated using the complex Two-Higgs-DoubletModel (cTHDM) as an effective field theory (EFT) of the MSSM. Here, we discuss the implement ation of this calculation, which we improve in several aspects, into the hybrid framework of FeynHiggs by combing the cTHDM-EFT calculation with the existing fixed-order calculation. This combination allows accurate predictions also in the intermediate regime where some SUSY particles are relatively light, some relatively heavy and some in between. Moreover, the implementation provides precise predictions for the Higgs decay rates and production cross-sections.
278 - M. Frank , L. Galeta , T. Hahn 2013
The interpretation of the Higgs signal at sim 126 GeV within the Minimal Supersymmetric Standard Model (MSSM) depends crucially on the predicted properties of the other Higgs states of the model, as the mass of the charged Higgs boson, MH+-. This mas s is calculated in the Feynman-diagrammatic approach within the MSSM with real parameters. The result includes the complete one-loop contributions and the two-loop contributions of O(alpha_t alpha_s). The one-loop contributions lead to sizable shifts in the MH+- prediction, reaching up to sim 8 GeV for relatively small values of M_A. Even larger effects can occur depending on the sign and size of the mu parameter that enters the corrections affecting the relation between the bottom-quark mass and the bottom Yukawa coupling. The two-loop O(alpha_t alpha_s) terms can shift MH+- by more than 2 GeV. The two-loop contributions amount to typically about 30% of the one-loop corrections for the examples that we have studied. These effects can be relevant for precision analyses of the charged MSSM Higgs boson.
Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, i f unattended, an important impact on the interpretation of these measurements within the Standard Model (SM), and thus on constraints on new physics. Current theory uncertainties, which would dominate the total uncertainty, need to be strongly reduced through future advances in the calculation of multi-loop radiative corrections together with improved experimental and theoretical control of the precision of SM input parameters. This document aims to provide an estimate of the required improvement in calculational accuracy in view of the anticipated high precision at the FCC-ee. For the most relevant electroweak and Higgs-boson precision observables we evaluate the corresponding quantitative impact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا