ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fugacity expansion, Lee-Yang zeros and order-disorder transitions in hard-core lattice systems

241   0   0.0 ( 0 )
 نشر من قبل Ian Jauslin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish existence of order-disorder phase transitions for a class of non-sliding hard-core lattice particle systems on a lattice in two or more dimensions. All particles have the same shape and can be made to cover the lattice perfectly in a finite number of ways. We also show that the pressure and correlation functions have a convergent expansion in powers of the inverse of the fugacity. This implies that the Lee-Yang zeros lie in an annulus with finite positive radii.



قيم البحث

اقرأ أيضاً

121 - Xinhua Peng , Hui Zhou , Bo-Bo Wei 2014
Lee-Yang zeros are points on the complex plane of magnetic field where the partition function of a spin system is zero and therefore the free energy diverges. Lee-Yang zeros and their generalizations are ubiquitous in many-body systems and they fully characterize the analytic properties of the free energy and hence thermodynamics of the systems. Determining the Lee-Yang zeros is not only fundamentally important for conceptual completeness of thermodynamics and statistical physics but also technically useful for studying many-body systems. However, Lee-Yang zeros have never been observed in experiments, due to the intrinsic difficulty that Lee-Yang zeros would occur only at complex values of magnetic field, which are unphysical. Here we report the first observation of Lee-Yang zeros, by measuring quantum coherence of a probe spin coupled to an Ising-type spin bath. As recently proposed, the quantum evolution of the probe spin introduces a complex phase factor, and therefore effectively realizes an imaginary magnetic field on the bath. From the measured Lee-Yang zeros, we reconstructed the free energy of the spin bath and determined its phase transition temperature. This experiment demonstrates quantum coherence probe as a useful approach to studying thermodynamics in the complex plane, which may reveal a broad range of new phenomena that would otherwise be inaccessible if physical parameters are restricted to be real numbers.
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models without symmetry, the curves on which the zeros lie are generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models, and the $q$-state Potts model for $q$ large enough.
Spatial aperiodicity occurs in various models and material s. Although today the most well-known examples occur in the area of quasicrystals, other applications might also be of interest. Here we discuss some issues related to the notion and occurren ce of aperiodic order in equilibrium statistical mechanics. In particular, we consider some spectral characterisations,and shortly review what is known about the occurrence of aperiodic order in lattice models at zero and non-zero temperatures. At the end some more speculative connections to the theory of (spin-)glasses are indicated.
Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros --- complex singularities of the free energy in systems of finite size --- have led to a unified un derstanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize non-equilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such non-equilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.
The distribution of Yang-Lee zeros in the ferromagnetic Ising model in both two and three dimensions is studied on the complex field plane directly in the thermodynamic limit via the tensor network methods. The partition function is represented as a contraction of a tensor network and is efficiently evaluated with an iterative tensor renormalization scheme. The free-energy density and the magnetization are computed on the complex field plane. Via the discontinuity of the magnetization, the density of the Yang-Lee zeros is obtained to lie on the unit circle, consistent with the Lee-Yang circle theorem. Distinct features are observed at different temperatures---below, above and at the critical temperature. Application of the tensor-network approach is also made to the $q$-state Potts models in both two and three dimensions and a previous debate on whether, in the thermodynamic limit, the Yang-Lee zeros lie on a unit circle for $q>2$ is resolved: they clearly do not lie on a unit circle except at the zero temperature. For the Potts models (q=3,4,5,6) investigated in two dimensions, as the temperature is lowered the radius of the zeros at a fixed angle from the real axis shrinks exponentially towards unity with the inverse temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا