ﻻ يوجد ملخص باللغة العربية
The variational method is very important in mathematical and theoretical physics because it allows us to describe the natural systems by physical quantities independently from the frame of reference used. A global and statistical approach have been introduced starting from non-equilibrium thermodynamics, obtaining the principle of maximum entropy generation for the open systems. This principle is a consequence of the lagrangian approach to the open systems. Here it will be developed a general approach to obtain the thermodynamic hamiltonian for the dynamical study of the open systems. It follows that the irreversibility seems to be the fundamental phenomenon which drives the evolution of the states of the open systems.
The dissipation generated during a quasistatic thermodynamic process can be characterised by introducing a metric on the space of Gibbs states, in such a way that minimally-dissipating protocols correspond to geodesic trajectories. Here, we show how
The principle of maximum irreversible is proved to be a consequence of a stochastic order of the paths inside the phase space; indeed, the system evolves on the greatest path in the stochastic order. The result obtained is that, at the stability, the
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of
We study the open version of the su$(m|n)$ supersymmetric Haldane-Shastry spin chain associated to the $BC_N$ extended root system. We first evaluate the models partition function by modding out the dynamical degrees of freedom of the su$(m|n)$ super
We investigate the problem of determining the Hamiltonian of a locally interacting open-quantum system. To do so, we construct model estimators based on inverting a set of stationary, or dynamical, Heisenberg-Langevin equations of motion which rely o