ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatically defined Quantum Dots in a Si/SiGe Heterostructure

160   0   0.0 ( 0 )
 نشر من قبل Andreas Wild
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an electrostatically defined few-electron double quantum dot (QD) realized in a molecular beam epitaxy grown Si/SiGe heterostructure. Transport and charge spectroscopy with an additional QD as well as pulsed-gate measurements are demonstrated. We discuss technological challenges specific for silicon-based heterostructures and the effect of a comparably large effective electron mass on transport properties and tunability of the double QD. Charge noise, which might be intrinsically induced due to strain-engineering is proven not to affect the stable operation of our device as a spin qubit. Our results promise the suitability of electrostatically defined QDs in Si/SiGe heterostructures for quantum information processing.



قيم البحث

اقرأ أيضاً

We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley spli tting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
We report on a quantum dot device design that combines the low disorder properties of undoped SiGe heterostructure materials with an overlapping gate stack in which each electrostatic gate has a dominant and unique function -- control of individual q uantum dot occupancies and of lateral tunneling into and between dots. Control of the tunneling rate between a dot and an electron bath is demonstrated over more than nine orders of magnitude and independently confirmed by direct measurement within the bandwidth of our amplifiers. The inter-dot tunnel coupling at the (0,2)<-->(1,1) charge configuration anti-crossing is directly measured to quantify the control of a single inter-dot tunnel barrier gate. A simple exponential dependence is sufficient to describe each of these tunneling processes as a function of the controlling gate voltage.
We report on the realization and top-gating of a two-dimensional electron system in a nuclear spin free environment using 28Si and 70Ge source material in molecular beam epitaxy. Electron spin decoherence is expected to be minimized in nuclear spin-f ree materials, making them promising hosts for solid-state based quantum information processing devices. The two-dimensional electron system exhibits a mobility of 18000 cm2/Vs at a sheet carrier density of 4.6E11 cm-2 at low temperatures. Feasibility of reliable gating is demonstrated by transport through split-gate structures realized with palladium Schottky top-gates which effectively control the two-dimensional electron system underneath. Our work forms the basis for the realization of an electrostatically defined quantum dot in a nuclear spin free environment.
235 - D. M. Zajac , T. M. Hazard , X. Mi 2015
We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots and the other is used for charge sensing. The quantum dot transport channel can support e ither a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35-70 microeV. By energizing two additional gates we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.
Electron spins in silicon have long coherence times and are a promising qubit platform. However, electric field noise in semiconductors poses a challenge for most single- and multi-qubit operations in quantum-dot spin qubits. Here, we investigate the dependence of low-frequency charge noise spectra on temperature and aluminum-oxide gate dielectric thickness in Si/SiGe quantum dots with overlapping gates. We find that charge noise increases with aluminum oxide thickness. We also find strong dot-to-dot variations in the temperature dependence of the noise magnitude and spectrum. These findings suggest that each quantum dot experiences noise caused by a distinct ensemble of two-level systems, each of which has a non-uniform distribution of thermal activation energies. Taken together, our results suggest that charge noise in Si/SiGe quantum dots originates at least in part from a non-uniform distribution of two-level systems near the surface of the semiconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا