ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and electrical properties and carrier doping effects on the Fe-based host compound Sr4Sc2Fe2As2O6

53   0   0.0 ( 0 )
 نشر من قبل Shoubao Zhang Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Additional charge carriers were introduced to the iron oxyarsenide Sr4Sc2Fe2As2O6 under a high-pressure condition, followed by measurements of electrical resistivity, Hall coefficient, and magnetic susceptibility. The host compound Sr4Sc2Fe2As2O6 shows metallic conductivity down to ~200 K and turns to show a semiconducting-like conductivity accompanied by a positive magneto-resistance (22% at 70 kOe). Although the carrier density is comparable at 300 K (5.9x1021 cm-3) with that of the other Fe-based superconductors, no superconductivity appears down to 2 K. This is primarily because the net carrier density decreases over 3 orders of magnitude on cooling and additionally a possible magnetic order at ~120 K prevents carriers from pairing. The properties were altered largely by introducing the additional carriers.

قيم البحث

اقرأ أيضاً

Here we report the structural, electrical and magnetic properties of Fe doped La0.7Ca0.3Mn1-xFexO3 with x = 0.0 to 1.0 prepared by conventional solid state reaction method. Simulated data on XRD shows an increase in volume with an increase in Fe ion concentration. XPS supports that Fe3+ ions directly substitute Mn3+ ions. Shifting towards lower wave-number and symmetric IR band structure confirms increase in volume and homogeneous distribution of Fe ions. Fe ion doesnt contribute in double-exchange (DE) conduction mechanism due to its stable half filled 3d orbital. The presence of Fe3+ ions encourages anti-ferromagnetism (AFM) generated by super-exchange interaction and suppress insulator-metal transition temperature (TIM). Magnetic measurements show the existence of magnetic polarons supported by increase in volume of unit cell and deviation from Curie-Weiss law.
160 - M. J. Han , S. Y. Savrasov 2010
Inclusion of correlation effects affects quantitatively the agreement with experiment as far as the value of energy shift and the level of doping is concerned, and our original statement that nesting at ($pi$,0) can be responsible for magnetic behavior of FeTe is hereby reinstated.
Using first principles calculations, we analyze structural and magnetic trends as a function of charge doping and pressure in BaFe$_2$As$_2$, and compare to experimentally established facts. We find that density functional theory, while accurately re producing the structural and magnetic ordering at ambient pressure, fails to reproduce some structural trends as pressure is increased. Most notably, the Fe-As bondlength which is a gauge of the magnitude of the magnetic moment, $mu$, is rigid in experiment, but soft in calculation, indicating residual local Coulomb interactions. By calculating the magnitude of the magnetic ordering energy, we show that the disruption of magnetic order as a function of pressure or doping can be qualitatively reproduced, but that in calculation, it is achieved through diminishment of $|mu|$, and therefore likely does not reflect the same physics as detected in experiment. We also find that the strength of the stripe order as a function of doping is strongly site-dependent: magnetism decreases monotonically with the number of electrons doped at the Fe site, but increases monotonically with the number of electrons doped at the Ba site. Intra-planar magnetic ordering energy (the difference between checkerboard and stripe orderings) and interplanar coupling both follow a similar trend. We also investigate the evolution of the orthorhombic distortion, $e=(a-b)/(a+b),$ as a function of $mu$, and find that in the regime where experiment finds a linear relationship, our calculations are impossible to converge, indicating that in density functional theory, the transition is first order, signalling anomalously large higher order terms in the Landau functional.
The effects of planar hole content, p (= x), on the uniform (q = 0) magnetic susceptibility, c(T), of La2-xSrxCu1-yZnyO4 were investigated over a wide range of Sr (x) and Zn (y) contents. A strongly p-dependent Zn-induced magnetic behavior was observ ed. The apparent Zn-induced magnetic moment is larger in underdoped La2-xSrxCu1-yZnyO4 and it decreases quite sharply around p ~ 0.19. It does not change much for further overdoping. This indicates a possible role of the pseudogap on the Zn induced magnetic behavior, as there is growing evidence that pseudogap vanishes quite abruptly at p ~ 0.19.
99 - H. J. Im , Y. S. Kwon , 2002
We have measured the electric resistivity, magnetoresistance, magnetic susceptibility and magnetization of the new Kondo-lattice compound Ce3Pd4Ge4. The electrical resistivity exhibits a rapid drop at temperatures below 6 K, while the magnetic suscep tibility does not show any corresponding anomaly at that temperature. This phenomenon is similar to that of Ce3Pd20Ge6 which shows quadrupolar interation. We suggest that there is the possibility of quadrupolar interaction in the orthorhombic 4f-electron system Ce3Pd4Ge4. In addition, it is realized that the spin-dependent scattering effect is responsible for the magnetotransport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا