ترغب بنشر مسار تعليمي؟ اضغط هنا

On the pseudogap and doping-dependent magnetic properties of La2-xSrxCu1-yZnyO4

93   0   0.0 ( 0 )
 نشر من قبل Saleh Naqib
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of planar hole content, p (= x), on the uniform (q = 0) magnetic susceptibility, c(T), of La2-xSrxCu1-yZnyO4 were investigated over a wide range of Sr (x) and Zn (y) contents. A strongly p-dependent Zn-induced magnetic behavior was observed. The apparent Zn-induced magnetic moment is larger in underdoped La2-xSrxCu1-yZnyO4 and it decreases quite sharply around p ~ 0.19. It does not change much for further overdoping. This indicates a possible role of the pseudogap on the Zn induced magnetic behavior, as there is growing evidence that pseudogap vanishes quite abruptly at p ~ 0.19.



قيم البحث

اقرأ أيضاً

The effects of planar hole content, p (= x), on the static magnetic susceptibility, chi(T), of polycrystalline La2-xSrxCu1-yZnyO4 compounds were investigated over a wide range of Sr (x) and Zn (y) contents. The magnetic behavior caused by Zn was foun d to depend strongly on the hole content. The apparent magnetic moment induced by Zn was larger in underdoped La2-xSrxCu1-yZnyO4, decreased quite sharply around p ~ 0.19, and did not change much for further overdoping. This is interpreted in terms of the effect of the pseudogap on the Zn-induced magnetic behavior, as there is growing evidence that the pseudogap vanishes quite abruptly at p ~ 0.19 +/- 0.01. From a detailed analysis of chi(T) data the Zn-induced magnetic contribution was found to be rather complex and showed non-Curie-like features over a wide range of temperature. The observed behavior was scrutinized in terms of two scenarios (a) that of independent localized-moments and (b) low energy quasiparticle resonances associated with each Zn atom. Our study points towards the latter scenario and more generally suggests that there is a re-distribution of quasiparticle spectral weight due to Zn substitution, the features of which are greatly influenced by the presence and magnitude of the pseudogap.
We use inelastic neutron scattering to measure the magnetic excitations in the underdoped superconductor La2-xSrxCuO4 (x=0.085, Tc=22 K) over energy and temperatures ranges 5 < E < 200 meV and 5 < T < 300 K respectively. At high temperature (T = 300 K), we observe strongly damped excitations with a characteristic energy scale of approximately 50 meV. As the temperature is lowered to T = 30 K, and we move into the pseudogap state, the magnetic excitations become highly structured in energy and momentum below about 60 meV. This change appears to be associated with the development of the pseudogap in the electronic excitations.
The effects of planar hole content, p, on the static magnetic susceptibility, chi(T), of Y1-xCaxBa2Cu3O7-delta polycrystalline samples were investigated over a wide range of Ca (x) and oxygen contents. Non-magnetic Ca2+, in the 3p6 state, induces a C urie-like contribution to chi(T) that increases systematically and non-linearly with x but is almost independent of p. We argue that this arises from statistical clusters containing two or more nearest neighbor Ca atoms. We have again found that the pseudogap in the quasi-particle spectral weight appears abruptly below a planar hole content p = 0.190 +/- 0.005.
Using scanning tunneling spectroscopy we examined the local density of states of thin c-axis La2-xSrxCuO4 films, over wide doping and temperature ranges. We found that the pseudogap exists only at doping levels lower than optimal. For x = 0.12, close to the anomalous x = 1/8 doping level, a zero bias conductance peak was the dominant spectral feature, instead of the excepted V- shaped (c-axis tunneling) gap structure. We have established that this surprising effect cannot be explained by tunneling into (110) facets. Possible origins for this unique behavior are discussed.
207 - M. J. Han , S. Y. Savrasov 2010
Inclusion of correlation effects affects quantitatively the agreement with experiment as far as the value of energy shift and the level of doping is concerned, and our original statement that nesting at ($pi$,0) can be responsible for magnetic behavior of FeTe is hereby reinstated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا