ﻻ يوجد ملخص باللغة العربية
This paper reports on the observation and analysis of magnetotransport phenomena in the nonlinear differential resistance $r_{xx}=dV_{xx}/dI$ of high-mobility InGaAs/InP and GaAs/AlGaAs Hall bar samples driven by direct current, $Idc$. Specifically, it is observed that Shubnikov -de Haas (SdH) oscillations at large filling factors invert their phase at sufficiently large values of $Idc$. This phase inversion is explained as being due to an electron heating effect. In the quantum Hall effect regime the $r_{xx}$ oscillations transform into diamond-shaped patterns with different slopes corresponding to odd and even filling factors. The diamond-shaped features at odd filling factors can be used as a probe to determine spin energy gaps. A Zero Current Anomaly (ZCA) which manifests itself as a narrow dip in the $r_{xx}(Idc)$ characteristics at zero current, is also observed. The ZCA effect strongly depends upon temperature, vanishing above 1 K while the transport diamonds persist to higher temperatures. The transport diamonds and ZCA are fully reproduced in a higher mobility GaAs/AlGaAs Hall bar structure confirming that these phenomena reflect intrinsic properties of two-dimensional systems.
We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spi
Introduction of a Josephson field effect transistor (JoFET) concept sparked active research on proximity effects in semiconductors. Induced superconductivity and electrostatic control of critical current has been demonstrated in two-dimensional gases
We present time-resolved Kerr rotation measurements of electron spin dynamics in a GaAs/AlGaAs heterojunction system that contains a high-mobility two-dimensional electron gas (2DEG). Due to the complex layer structure of this material the Kerr rotat
Effects of microwave radiation on magnetoresistance are analyzed in a balance-equation scheme that covers regimes of inter- and intra-Landau level processes and takes account of photon-asissted electron transitions as well as radiation-induced change
We report a magnetotransport study of an ultra-high mobility ($bar{mu}approx 25times 10^6$,cm$^2$,V$^{-1}$,s$^{-1}$) $n$-type GaAs quantum well up to 33 T. A strong linear magnetoresistance (LMR) of the order of 10$^5$ % is observed in a wide tempera