ﻻ يوجد ملخص باللغة العربية
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449--1466]. For a given semi-rational polytope P and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope P parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.
This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients o
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449-1466]. By we
A lattice polytope is free (or empty) if its vertices are the only lattice points it contains. In the context of valuation theory, Klain (1999) proposed to study the functions $alpha_i(P;n)$ that count the number of free polytopes in $nP$ with $i$ ve
Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrovs Gluing Theorem. In particular, a d
Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that live on a cone, in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone