ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate Sums on Polyhedra II: Bidegree and Poisson Formula

151   0   0.0 ( 0 )
 نشر من قبل Matthias K\\\"oppe
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449-1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhedral cone. For a given rational subspace L, we integrate a given polynomial function h over all lattice slices of the affine cone s + c parallel to the subspace L and sum up the integrals. We study these intermediate sums by means of the intermediate generating functions $S^L(s+c)(xi)$, and expose the bidegree structure in parameters s and $xi$, which was implicitly used in the algorithms in our papers [Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra, Found. Comput. Math. 12 (2012), 435-469] and [Intermediate sums on polyhedra: Computation and real Ehrhart theory, Mathematika 59 (2013), 1-22]. The bidegree structure is key to a new proof for the Baldoni--Berline--Vergne approximation theorem for discrete generating functions [Local Euler--Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of rational polytopes, Contemp. Math. 452 (2008), 15-33], using the Fourier analysis with respect to the parameter s and a continuity argument. Our study also enables a forthcoming paper, in which we study intermediate sums over multi-parameter families of polytopes.



قيم البحث

اقرأ أيضاً

We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449--1466]. For a given semi-rational polytope P and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope P parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.
272 - Michele Vergne 2013
We generalize Dahmen-Micchelli deconvolution formula for Box splines with parameters. Our proof is based on identities for Poisson summation of rational functions with poles on hyperplanes.
The convex hull generated by the restriction to the unit ball of a stationary Poisson point process in the $d$-dimensional Euclidean space is considered. By establishing sharp bounds on cumulants, exponential estimates for large deviation probabiliti es are derived and the relative error in the central limit theorem on a logarithmic scale is investigated for a large class of key geometric characteristics. This includes the number of lower-dimensional faces and the intrinsic volumes of the random polytopes. Furthermore, moderate deviation principles for the spatial empirical measures induced by these functionals are also established using the method of cumulants. The results are applied to deduce, by duality, fine probabilistic estimates and moderate deviation principles for combinatorial parameters of a class of zero cells associated with Poisson hyperplane mosaics. As a special case this comprises the typical Poisson-Voronoi cell conditioned on having large inradius.
In 1992, Kalai and Kleitman proved a quasipolynomial upper bound on the diameters of convex polyhedra. Todd and Sukegawa-Kitahara proved tail-quasipolynomial bounds on the diameters of polyhedra. These tail bounds apply when the number of facets is g reater than a certain function of the dimension. We prove tail-quasipolynomial bounds on the diameters of polytopes and normal simplicial complexes. We also prove tail-polynomial upper bounds on the diameters of polyhedra.
In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we cal l by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا