ﻻ يوجد ملخص باللغة العربية
Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that live on a cone, in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone Lambda, with the apex a of Lambda enclosed inside (the image of) C; we also prove that each point of C is visible to a. In particular, we obtain that these curves have non-self-intersecting developments in the plane. Moreover, the curves we identify that live on cones to both sides support a new type of source unfolding of the entire surface of P to one non-overlapping piece, as reported in a companion paper.
We extend the notion of a source unfolding of a convex polyhedron P to be based on a closed polygonal curve Q in a particular class rather than based on a point. The class requires that Q lives on a cone to both sides; it includes simple, closed quas
Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrovs Gluing Theorem. In particular, a d
Given any two convex polyhedra P and Q, we prove as one of our main results that the surface of P can be reshaped to a homothet of Q by a finite sequence of tailoring steps. Each tailoring excises a digon surrounding a single vertex and sutures the d
We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in $RR^n$.
We prove that every positively-weighted tree T can be realized as the cut locus C(x) of a point x on a convex polyhedron P, with T weights matching C(x) lengths. If T has n leaves, P has (in general) n+1 vertices. We show there are in fact a continuu