ﻻ يوجد ملخص باللغة العربية
We use AdS/CFT duality to compute in N=4 Yang-Mills theory the finite temperature spatial correlator G(r) of the scalar operator F^2, integrated over imaginary time. The computation is carried out both at zero frequency and integrating the spectral function over frequencies. The result is compared with a perturbative computation in finite T SU(N_c) Yang-Mills theory.
We use AdS/QCD duality to compute the finite temperature Greens function G(omega,k;T) of the shear operator T_12 for all omega,k in hot Yang-Mills theory. The goal is to assess how the existence of scales like the transition temperature and glueball
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes
We study singular time-dependent $frac{1}{8}$-BPS configurations in the abelian sector of ${{mathcal N}= 4}$ supersymmetric Yang-Mills theory that represent BPS string-like defects in ${{mathbb R}times S^3}$ spacetime. Such BPS strings can be describ
This is a pedagogical review on the integrability-based approach to the three-point function in N=4 supersymmetric Yang-Mills theory. We first discuss the computation of the structure constant at weak coupling and show that the result can be recast a