ﻻ يوجد ملخص باللغة العربية
Platelet-like single crystals of the Ca(Fe1-xCox)2As2 series having lateral dimensions up to 15 mm and thickness up to 0.5 mm were obtained from the high temperature solution growth technique using Sn flux. Upon Co doping, the c-axis of the tetragonal unit cell decreases, while the a-axis shows a less significant variation. Pristine CaFe2As2 shows a combined spin-density-wave and structural transition near T = 166 K which gradually shifts to lower temperatures and splits with increasing Co-doping. Both transitions terminate abruptly at a critical Co-concentration of xc = 0.075. For x geq 0.05, superconductivity appears at low temperatures with a maximum transition temperature TC of around 20 K. The superconducting volume fraction increases with Co concentration up to x = 0.09 followed by a gradual decrease with further increase of the doping level. The electronic phase diagram of Ca(Fe1-xCox)2As2 (0 leq x leq 0.2) series is constructed from the magnetization and electric resistivity data. We show that the low-temperature superconducting properties of Co-doped CaFe2As2 differ considerably from those of BaFe2As2 reported previously. These differences seem to be related to the extreme pressure sensitivity of CaFe2As2 relative to its Ba counterpart.
An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x < 0.06 (x > 0.06), which illustra
Ultrafast terahertz (THz) pump{probe spectroscopy reveals unusual out-of-equilibrium Cooper pair dynamics driven by femtosecond (fs) optical quench of superconductivity (SC) in iron pnictides. We observe a two{step quench of the SC gap, where an abno
The orbital symmetries of electron doped iron-arsenide superconductors Ba(Fe1-xCox)2As2 have been measured with x-ray absorption spectroscopy. The data reveal signatures of Fe d electron itinerancy, weak electronic correlations, and a high degree of
We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. T
The magnetic fluctuations associated with a quantum critical point (QCP) are widely believed to cause the non-Fermi liquid behaviors and unconventional superconductivities, for example, in heavy fermion systems and high temperature cuprate supercondu