ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium Pair Breaking in Ba(Fe1-xCox)2As2 Superconductors: Evidence for Formation of Photo-Induced Excitonic Spin-Density-Wave State

100   0   0.0 ( 0 )
 نشر من قبل Jigang Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrafast terahertz (THz) pump{probe spectroscopy reveals unusual out-of-equilibrium Cooper pair dynamics driven by femtosecond (fs) optical quench of superconductivity (SC) in iron pnictides. We observe a two{step quench of the SC gap, where an abnormally slow (many 100s of ps) quench process is clearly distinguished from the usual fast (sub-ps) hot{phonon{mediated scattering channel. This pair breaking dynamics depends strongly on doping, pump uence, and temperature. The above observations, together with quantum kinetic modeling of non-equilibrium SC and magnetic correlations, provide evidence for photogeneration of a transient state where SC competes with build{up of spin-density-wave (SDW) excitonic correlation between quasi-particles (QP).



قيم البحث

اقرأ أيضاً

We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samp les, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
Platelet-like single crystals of the Ca(Fe1-xCox)2As2 series having lateral dimensions up to 15 mm and thickness up to 0.5 mm were obtained from the high temperature solution growth technique using Sn flux. Upon Co doping, the c-axis of the tetragona l unit cell decreases, while the a-axis shows a less significant variation. Pristine CaFe2As2 shows a combined spin-density-wave and structural transition near T = 166 K which gradually shifts to lower temperatures and splits with increasing Co-doping. Both transitions terminate abruptly at a critical Co-concentration of xc = 0.075. For x geq 0.05, superconductivity appears at low temperatures with a maximum transition temperature TC of around 20 K. The superconducting volume fraction increases with Co concentration up to x = 0.09 followed by a gradual decrease with further increase of the doping level. The electronic phase diagram of Ca(Fe1-xCox)2As2 (0 leq x leq 0.2) series is constructed from the magnetization and electric resistivity data. We show that the low-temperature superconducting properties of Co-doped CaFe2As2 differ considerably from those of BaFe2As2 reported previously. These differences seem to be related to the extreme pressure sensitivity of CaFe2As2 relative to its Ba counterpart.
154 - M. Yi , D. H. Lu , J.-H. Chu 2010
Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors e xhibit a tetragonal to orthorhombic structural transition (i.e. a broken C4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant dxz and dyz character, which is consistent with anisotropy observed by other probes. For compositions x>0, for which the structural transition (TS) precedes the magnetic transition (TSDW), an anisotropic splitting is observed to develop above TSDW, indicating that it is specifically associated with TS. For unstressed crystals, the band splitting is observed close to TS, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.
173 - F. Hardy , P. Burger , T. Wolf 2010
An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x < 0.06 (x > 0.06), which illustra tes the strong competition between magnetism and superconductivity to monopolize the Fermi surface in the underdoped region and the filling of the hole bands for overdoped Ba(Fe1-xCox)2As2. All superconducting samples exhibit a residual electronic density of states of unknown origin in the zero-temperature limit, which is minimal at optimal doping but increases to the normal-state value in the strongly under- and over-doped regions. The remaining specific heat in the superconducting state is well described using a two-band model with isotropic s-wave superconducting gaps.
145 - S. Lee , J. Jiang , J. D. Weiss 2009
We show that despite the low anisotropy, strong vortex pinning and high irreversibility field Hirr close to the upper critical field Hc2 of Ba(Fe1-xCox)2As2, the critical current density Jgb across [001] tilt grain boundaries (GBs) of thin film Ba(Fe 1-xCox)2As2 bicrystals is strongly depressed, similar to high-Tc cuprates. Our results suggest that weak-linked GBs are characteristic of both cuprates and pnictides because of competing orders, low carrier density, and unconventional pairing symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا